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1 Introduction

A vast proportion of �nancial assets is traded in over-the-counter (OTC) markets. In these

markets, transactions are bilateral, prices are dispersed, trading relationships are persistent,

and, typically, a small number of large dealers intermediate a large share of the trading volume.

In this paper, we explore a novel approach to modeling OTCmarkets that re�ects these features.

In our model, each dealer with private information can engage in several bilateral transac-

tions with her potential trading partners, determined by her links in a network. Each dealer�s

strategy is represented as a quantity-price schedule. Our focus is on how decentralization

(characterized by the structure of the dealer network) and adverse selection jointly in�uence

information di¤usion, expected pro�ts, trading costs, and welfare. We prove that information

di¤usion through prices is not a¤ected by strategic considerations in a well-de�ned sense. We

show that each equilibrium price depends on all the information available in the economy, in-

corporating even the signals of dealers located far from a given transaction. We identify an

informational externality constraining the informativeness of prices. We highlight that decen-

tralization per se can both increase or decrease welfare and that the main determinant of a

dealer�s trading cost is not her centrality but the centrality of her counterparties. By extensive

simulation we show that more central dealers tend to learn more, trade more at lower costs,

and earn higher expected pro�t. However, we also explain why in some special cases, more

connected dealers might earn a lower expected pro�t.

In our main speci�cation, there are n risk-neutral dealers organized in a dealer network.

Intuitively, a link between i and j represents that they are potential counterparties in a trade.

There is a single risky asset in zero net supply. The �nal value of the asset is uncertain and

interdependent across dealers with an arbitrary correlation coe¢ cient controlling the relative

importance of the common and private components. Each dealer observes a private signal

about her value, and all dealers have the same quality of information. Since values are interde-

pendent, it is valuable to infer each other�s signals. Values and signals are drawn from a known

multivariate normal distribution. Each dealer simultaneously chooses her trading strategy, un-

derstanding her price e¤ect given other dealers�strategies. For any private signal, each dealer�s

trading strategy is a generalized demand function that speci�es the quantity of the asset she

is willing to trade with each of her counterparties, depending on the vector of prices in the
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transactions she engages in. Each dealer, in addition to trading with other dealers, also trades

with price-sensitive customers. In equilibrium, prices and quantities have to be consistent with

the set of generalized demand functions and the market clearing conditions for each link. We

refer to this structure as the OTC game. The OTC game is, essentially, a generalization of the

Vives (2011) variant of Kyle (1989) to networks. We consider general, connected networks.

We show that equilibrium beliefs in the OTC game are independent of dealers�strategic

considerations. In fact, we construct a separate game, in which dealers do not trade, that

generates the same posterior beliefs. In this simpler, auxiliary game, dealers are connected

in the same network and acting in the same informational environment as in the OTC game.

However, dealers�aim is to make a best guess of their own value conditional on their signals and

the guesses of the other dealers they are connected to. We label this structure the conditional

guessing game. As each dealer�s equilibrium guess depends on her neighbors� guesses, and

through those, on her neighbors�neighbors�guesses etc., each equilibrium guess will partially

incorporate the private information of all the dealers in a connected network. However, dealers

do not internalize how the informativeness of their guess a¤ects others� decisions, and the

equilibrium is typically not be informationally e¢ cient. That is, dealers tend to put too much

weight on their own signal, making their guess ine¢ ciently informative about the common

component.

In the OTC game, we show that each equilibrium price is a weighted sum of the posterior

beliefs of the counterparties that participate in the transaction, and, hence, it inherits the

main properties of beliefs. In addition, each dealer�s equilibrium position is proportional to the

di¤erence between her expectation and the price. Therefore, a dealer tends to sell at a price

higher than her belief to relatively optimistic counterparties and buys at a price lower than

her belief from pessimists. This gives rise to dispersed prices and pro�table intermediation

for dealers with many counterparties, as it is characteristic of real-world OTC markets. The

proportionality coe¢ cient of a dealer�s position is the inverse of her price impact in that trans-

action. In turn, the dealer�s price impact is smaller if her counterparty is less concerned about

adverse selection, either because the common value component is less important, or because

she is more central and learns from several other prices.

To gain further insights on our main topics, we proceed in two distinct ways. First, we use

the network formation model introduced by Jackson and Rogers (2007) to generate random
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networks that are calibrated to match the European CDS market, as described by Brunner-

meier, Clerc and Scheicher (2013). We illustrate in a wide range of realistic networks that

have a core-periphery structure that we should expect a more connected dealer to learn more,

intermediate more, trade larger gross volume at lower price impact, and make more pro�t. We

contrast these predictions with �ndings in the empirical literature.

Second, we gain further insights on welfare, expected pro�ts, and illiquidity by analyzing

trade in the most common OTC network structures. In particular, we isolate the e¤ect of

decentralization by comparing the complete OTC network with centralized markets; we illus-

trate the role of link density by comparing circulant OTC networks in which we successively

increase the number of links each dealer has; and we analyze the e¤ect of asymmetric number

of links in the star OTC network. We show that centralized trading might not improve welfare

and, explain that, for certain parameters, more links imply more pro�ts only when the network

exhibits assortativity.

Finally, we generalize our model to study market segmentation by allowing multiple dealers

at each node of the dealer network. For example, by considering a star network with n nodes,

we can model an economy with (n� 1) trading venues where only one central group trades in

all venues, while each of the other (n� 1) periphery groups trade in only one trading venue.

Numerically, we show that dealers in periphery groups might face less illiquidity, as captured

by a lower price impact, and might learn more in a more segmented market

Related literature

Most models of OTC markets are based on search and bargaining (e.g., Du¢ e, Garleanu and

Pedersen (2005); Du¢ e, Gârleanu and Pedersen (2007); Lagos, Rocheteau and Weill (2008);

Vayanos and Weill (2008); Lagos and Rocheteau (2009); Afonso and Lagos (2012); and Atke-

son, Eisfeldt and Weill (2012)). By construction, in search models transactions are between

atomistic dealers through non-persistent links. Therefore, our approach is more suitable to

capture e¤ects of high market concentration implied by the presence of few large dealers in-

termediating the vast proportion of volume. At the same time, we collapse trade to a single

period missing implications on the dynamic dimension. In this sense, we view these approaches

to be complementary. However, models of learning through trade based on search require non-

standard structures and are hard to compare to existing results on centralized markets (e.g.,
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Du¢ e, Malamud and Manso (2009); Golosov, Lorenzoni and Tsyvinski (2009)).1 Our ap-

proach is compatible with the standard, jointly normal framework of asymmetric information

and learning.

There is a growing literature studying trading in a network (e.g., Kranton and Minehart

(2001); Rahi and Zigrand (2006); Gale and Kariv (2007); Gofman (2011); Condorelli and

Galeotti (2012); Choi, Galeotti and Goyal (2013); Malamud and Rostek (2013); Manea (2013);

Nava (2013)). These papers typically consider either the sequential trade of a single unit

of the asset or a Cournot-type quantity competition.2 In contrast, we allow agents to form

(generalized) demand schedules conditioning the quantities for each of their transactions on the

vector equilibrium prices in these transactions. This emphasizes that the terms of the various

transactions of a dealer are interconnected in an OTC market. Also, to our knowledge, none of

the papers within this class addresses the issue of information aggregation which is the focus

of our analysis.3

A separate literature studies Bayesian (Acemoglu et al. (2011)) and non-Bayesian (Bala and

Goyal (1998); DeMarzo, Vayanos and Zwiebel (2003); Golub and Jackson (2010)) learning in

the context of arbitrary connected social networks. In these papers, agents update their beliefs

about a payo¤-relevant state after observing the actions of their neighbors in the network. Our

model complements these works by considering that (Bayesian) learning takes place through

trading.

The paper is organized as follows. The following section introduces the model set-up and the

equilibrium concept. In Section 3, we derive the equilibrium, and give su¢ cient conditions for

existence. We characterize the informational content of prices and characteristics of information

di¤usion in Section 4. In Section 5, we study expected pro�t, welfare, and illiquidity based on

some of the most common examples. We extend our analysis to simulated random networks

in Section 6. In Section 7, we show how our framework can be extended to study market

1The main focus of these models is the time-dimension of information di¤usion across agents. In these
models, incentives to share information and to learn are driven by the fact that two agents meet repeatedly or
any agent meet with counterparties of their counterparties with zero probability. This is in contrast with our
approach where delears understand that the network structure may lead to overlapping information among their
counterparties.

2As an exception, Malamud and Rostek (2013) also use a multi-unit double-auction set-up to model a decen-
tralized market. However, they do not consider the problem of learning through trade.

3While there is another stream of papers (e.g., Ozsoylev and Walden (2011); Colla and Mele (2010); Walden
(2013)) that consider that traders have access to the information of their neighbors in a network, in these models
trade takes place in a centralized market.

5



segmentation. In Section 8, we conclude.

2 A General Model of Trading in OTC Markets

2.1 The model set-up

We consider an economy with n risk-neutral dealers that trade bilaterally a divisible risky

asset. All trades take place at the same time. Dealers, apart from trading with each other, also

serve a price sensitive customer-base. Each dealer is uncertain about the value of the asset.

This uncertainty is captured by �i, referred to as dealer i�s value. We consider that values are

interdependent across dealers. In particular, the value of the asset for dealer i can be explained

by a component, �̂, that is common to all dealers, and a component, �i, that is speci�c to

dealer i, such that

�i = �̂ + �i;

with �̂ � N(0; �2
�̂
), �i � IIDN(0; �2�), and V(�̂; �i) = 0, where V (�; �) represents the variance-

covariance operator. This implies that �i is normally distributed with mean 0 and variance

�2� = �
2
�̂
+�2�. Di¤erences in dealers�values re�ect, for instance, di¤erences in usage of the asset

as collateral, in technologies to repackage and resell cash�ows, in risk-management constraints.

The degree of the interdependence between dealers�values is captured by the correlation coef-

�cient

� =
�2
�̂

�2�
;

where � 2 [0; 1]. This representation is useful as we can vary the degree of interdependence, �,

while keeping the variance �2� constant.

The asset is in zero net-supply. This is without loss of generality, provided supply is

constant. We do not assume any constraints on the size or sign of dealers�positions.

We assume that each dealer receives a private signal, si, such that

si = �i + "i;

where "i � IIDN(0; �2") and V(�j ; "i) = 0, for all i and j.

Dealers are organized into a trading network, g. A link ij 2 g implies that i and j are
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potential trading partners, or neighbors in the network g. Intuitively, agent i and j know and

su¢ ciently trust each other to trade if they �nd mutually agreeable terms. Let gi denote the

set of i�s neighbors and mi �
��gi�� the number of i�s neighbors. If two dealers have a link, let

qiij denote the quantity that dealer i trades over link ij. The price at which trade takes place

is denoted by pij . Links in the network are undirected, such that if ij 2 g, then ji 2 g as well.

The notation re�ects this property as pij = pji and qiij = q
i
ji, for instance.

While our main results hold for any network, throughout the paper, we illustrate the results

using two main types of networks as examples.

Example 1 In an (n;m) circulant network, with n odd and m < n even, if dealers are

arranged in a ring then each dealer is connected with m=2 other dealers on her left and m=2

on her right. The (n; 2) circulant network is the circle, while the (n; n� 1) circulant network

is the complete network.

Example 2 In an star network, one dealer is connected with n � 1 other dealers, and no

other links exist.

We de�ne a one-shot game where each dealer chooses an optimal trading strategy, provided

she takes as given others�strategies but she understands that her trade has a price e¤ect. In

particular, the strategy of a dealer i is a map from the signal space to the space of generalized

demand functions. For each dealer i with signal si, a generalized demand function is a contin-

uous function Qi : Rm
i ! Rm

i
which maps the vector of prices4, pgi = (pij)j2gi , that prevail

in the transactions that dealer i participates in network g into a vector of quantities she wishes

to trade with each of her counterparties. The j-th element of this correspondence, Qiij(s
i;pgi),

represents her demand function when her counterparty is dealer j, such that

Qi(si;pgi) =
�
Qiij(s

i;pgi)
�
j2gi

:

Note that a dealer can buy a given quantity at a given price from one counterparty and sell

a di¤erent quantity at a di¤erent price to another at the same time. Also, the quantity that

dealer i trades with dealer j, qiij = Q
i
ij(s

i;pgi), depends on all the prices pgi : For example, if

k is linked to i who is linked to j, a high demand from dealer k might raise the bilateral price
4A vector is always considered to be a column vector, unless explicitly stated otherwise.
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pki: This might make dealer i to revise her estimation of her value upwards and adjust her

supplied quantity both to k and to j accordingly. However, Qiij(s
i;pgi) depends only on pgi

but not on the full price vector. This emphasizes a critical feature of OTC markets, namely

that the price and the quantity traded in a bilateral transaction are known only by the two

counterparties involved in the trade and not immediately revealed to all market participants.

While OTC trading protocols do not typically involve the submission of full demand schedules,

we think of generalized demand functions as a reduced-form price determination mechanism

that captures the repeated exchange of limit and market orders (i.e., the o¤er and acceptance

of quotes) across �xed counterparties that have persistent links, within a short time-interval.

To illustrate this mapping, we explicitly model the price-discovery process in Appendix D.

This also shows why our speci�cation need not rely on the implicit assumption of a Walrasian

auctioneer.

Apart from trading with each other, each dealer also serves a price-sensitive customer base.

Customers have quadratic preferences for holding a quantity q of the asset. We assume that

a dealer i uses each link ij to satisfy an exogenously given fraction of her customer base. In

particular, we consider that dealer i trades with the customers she associates to the link ij at

the same price she trades with dealer j, pij , plus a �xed, exogenous, markup. This implies that

for each transaction between i and j, the customer base generates a downward-sloping demand

Dij(pij) = �ijpij ; (1)

where the constant �ij < 0 is a summary statistics for dealer i and j�s customers�preferences,

as well as the markup the dealers charge. This speci�cation captures in reduced form the

relationship between customers and dealers in OTC markets.

The expected payo¤ for dealer i corresponding to the strategy pro�le
�
Qi
�
si;pgi

�	
i2f1;:::;ng

is

E

24X
j2gi

Qiij(s
i;pgi)

�
�i � pij

�
jsi;pgi

35 ; (2)

where pij are the elements of the bilateral clearing price vector p de�ned by the smallest element
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of the set

eP ��Qi �si;pgi�	i ; s��np ��� Qiij �si;pgi�+Qjij �sj ;pgj�+ �ijpij = 0, 8 ij 2 go (3)

by lexicographical ordering5, if eP is non-empty. If eP is empty, we choose p to be the in�nity

vector and say that the market breaks down and de�ne all dealers�payo¤ to be zero. We refer

to the collection of rules that de�ne a unique vector p for any given realization of signals and

strategy pro�le as P
��
Qi
�
si;pgi

�	
i
; s
�
. As in Vives (2011), we require that trades clear both

on and o¤ the equilibrium. Introducing the set (3) ensures that we can evaluate dealers�payo¤s

for any demand functions that dealers may choose. This will allow us to search for a Bayesian

Nash equilibrium as explained in the following section.

2.2 Equilibrium concept

The environment described above represents a Bayesian game, henceforth the OTC game. The

risk-neutrality of dealers and the normal information structure allows us to search for a linear

equilibrium of this game de�ned as follows.

De�nition 1 A Linear Bayesian Nash equilibrium of the OTC game is a vector of linear

generalized demand functions
�
Q1(s1;pg1);Q

2(s2;pg2); :::;Q
n(sn;pgn)

	
such that Qi(si;pgi)

solves the problem

max
(Qiij)j2gi

E

8<:
24X
j2gi

Qiij(s
i;pgi)

�
�i � pij

�35 ��si;pgi
9=; ; (4)

for each dealer i, where p = P (�; s).

A dealer i chooses a demand function, Qiij (�), for each transaction ij, in order to maximize

her expected pro�ts, given her information, si, and given the demand functions chosen by

the other dealers. Implicit in the de�nition of the equilibrium is that each dealer understands

she has a price impact when trading with the counterparties given by the network g. Solving

problem (4) is equivalent to �nding a �xed point in demand functions.

5The speci�c algorithm we choose to select a unique price vector is immaterial. To ensure that our game is
well de�ned, we need to specify dealers�payo¤s as they depend on their strategies both on and o¤ the equilibrium
path.
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3 The Equilibrium

In this section, we derive the equilibrium in the OTC game. First, we derive the equilibrium

strategies as a function of posterior beliefs. Second, we construct posterior beliefs. Third,

we provide su¢ cient conditions for the existence of the equilibrium in the OTC game for any

network.

3.1 Derivation of demand functions

Our derivation follows Kyle (1989) and Vives (2011). We conjecture an equilibrium in linear

demand functions, such that the demand function of any given dealer i in the transaction with

a counterparty j is

Qiij(s
i;pgi) = t

i
ij(y

i
ijs

i +
X
k2gi

ziij;ikpik � pij): (5)

We refer to tiij as the trading intensity of dealer i on the link ij, while z
i
ij;ik captures the e¤ect

speci�c to the price pik on the quantity that dealer i demands on the link ij. As it will become

clear below, dealer i�s best response is (5) when all other agents�demand functions are given

by (5).

As is standard in similar models, we simplify the optimization problem (4), which is de�ned

over a function space, to �nding the functions Qiij(s
i;pgi) point-by-point. For this, we �x a

realization of the vector of signals, s. Then, we solve for the optimal quantity qiij that each dealer

i demands when trading with a counterparty j, as she takes as given the demand functions

of the other dealers. Thus, we obtain dealer�s i best response quantity qiij in the transaction

with dealer j, for each realization of the signals. This essentially gives us a map from prices to

quantities, or her demand function. We describe the procedure in detail below.

Given the conjecture (5) and market clearing

Qiij(s
i;pgi) +Q

j
ij(s

j ;pgj ) + �ijpij = 0; (6)

the residual inverse demand function of dealer i in a transaction with dealer j is

pij = �
tjij(y

j
ijs

j +
P
k2gj ;k 6=i z

j
ij;jkpjk) + q

i
ij

�ij + t
j
ij

�
zjij;ij � 1

� : (7)
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Denote

Ijij � �
tjij(y

j
ijs

j +
P
k2gj ;k 6=i z

j
ij;jkpjk)

�ij + t
i
ij

�
zjij;ij � 1

� (8)

and rewrite (7) as

pij = I
j
ij �

1

�ij + t
j
ij

�
zjij;ij � 1

�qiij : (9)

The uncertainty that dealer i faces about the signals of others is re�ected in the random

intercept of the residual inverse demand, Ijij , while her capacity to a¤ect the price is re�ected

in the slope �1=
�
�ij + t

j
ij

�
zjij;ij � 1

��
. Thus, the price pij is informationally equivalent to

the intercept Ijij . This implies that �nding the vector of quantities q
i = Qi(si;pgi) for one

particular realization of the signals, s, is equivalent to solving

max
(qiij)j2gi

E

24X
j2gi

qiij

0@�i + 1

�ij + t
j
ij

�
zjij;ij � 1

�qiij � Ijij
1A jsi;pgi

35 ;
or

max
(qiij)j2gi

X
j2gi

qiij

0@E ��ijsi;pgi�+ 1

�ij + t
j
ij

�
zjij;ij � 1

�qiij � Ijij
1A :

From the �rst-order conditions, we derive the quantities qiij for each link of i and for each

realization of s as

2
1

�ij + t
j
ij

�
zjij;ij � 1

�qiij = Ijij � E ��ijsi;pgi� :
Then, using (9), we can �nd the optimal demand function

Qiij(s
i;pgi) = �

�
�ij + t

j
ij

�
zjij;ij � 1

�� �
E(�i

��si;pgi )� pij� (10)

for each dealer i when trading with dealer j.

Further, given our conjecture (5), equating coe¢ cients in equation (10) implies that

E(�i
��si;pgi ) = yiijsi +X

k2gi
ziij;ikpik:

However, the projection theorem implies that the belief of each dealer i can be described as

a unique linear combination of her signal and the prices she observes. Thus, it must be that
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yiij = y
i, and ziij;ik = z

i
ik for all i, j, and k. In other words, the posterior belief of a dealer i is

given by

E
�
�ijsi;pgi

�
= yisi + zgipgi ; (11)

where zgi =
�
ziij

�
j2gi

is a row vector of size mi. Then, we obtain that the trading intensity of

dealer i is the inverse of her price impact in the transaction with dealer j, or

tiij = t
j
ij

�
1� zjij

�
� �ij : (12)

Substituting (11) back into our conjecture (5), we obtain that the demand of dealer i in a

transaction with dealer j is given by

Qiij(s
i;pgi) = t

i
ij

�
E
�
�ijsi;pgi

�
� pij

�
: (13)

That is, the quantity that dealer i trades with j is the perceived gain per unit of the asset,�
E
�
�ijsi;pgi

�
� pij

�
, multiplied by the endogenous trading intensity parameter, tiij . Moreover,

by substituting the optimal demand function (13) into the bilateral market clearing condition

(6), we obtain the equilibrium price between any pair of dealers i and j as a linear combination

of the posterior beliefs of i and j:

pij =
tiijE(�

i
��si;pgi ) + tjijE(�j ��si;pgj )
tiij + t

j
ij � �ij

; (14)

At this point we depart from the standard derivation. The standard approach is to deter-

mine the coe¢ cients of the demand function (5) using a �xed-point argument. In particular,

given our conjecture (5), the bilateral clearing conditions represent a system of linear equa-

tions from which prices can be derived as an a¢ ne combination of signals. Then, the projection

theorem implies that for each dealer i, the coe¢ cients yi and zgi must satisfy the following

�xed-point condition

24 yi

z>
gi

35 = V
0@�i;

24 si

pgi

351A�
0@V

24 si

pgi

351A�1 : (15)

Note that if (15) has a solution for each dealer i, equation (10) implies that our conjecture (5)
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veri�es.

In general networks, this procedure yields a high dimensional problem. First, the system of

bilateral clearing conditions (6) has as many equations as the number of links in the network.

Second, for each dealer we need to solve a �xed-point problem that is itself a function of her

position in the network.

Our main methodological innovation is that we pin down the equilibrium of the OTC game

in two steps. First, we construct the equilibrium posterior beliefs without solving for the

demand curve or the implied quantities and prices. For this, we introduce in Section 3.2 an

auxiliary game called the conditional guessing game.

Second, based on the equilibrium beliefs in the conditional guessing game, we construct the

equilibrium demand functions of the OTC game in Section 3.3. We provide conditions for the

existence of an equilibrium. In Section 4, we also formally state and qualify the one-to-one

mapping of the posterior beliefs in the two games.

3.2 Deriving posterior beliefs: The conditional guessing game

We de�ne the conditional guessing game as follows. Consider a set of n agents that are con-

nected in the same network g as in the corresponding OTC game. The information structure

is also the same as in the OTC game. Before the uncertainty is resolved, each agent i makes

a guess, ei, about her value of the asset, �i. Her guess is the outcome of a function that has

as arguments the guesses of other dealers she is connected to in the network g. In particular,

given her signal, dealer i chooses a guess function, E i
�
si; egi

�
, that maps the vector of guesses

of her neighbors, egi , into a guess e
i. When the uncertainty is resolved, agent i receives a payo¤

�
�
�i � ei

�2
; where ei is an element of the guess vector e de�ned by the smallest element of

the set

�
��
E i
�
si; egi

�	i
; s
�
�
�
e
�� ei = E i �si; egi� , 8 i	 ; (16)

by lexicographical ordering. We assume that if a �xed-point in (16) did not exist, then dealers

would not make any guesses and their payo¤s would be set to minus in�nity. Essentially, the

set of conditions (16) is the counterpart in the conditional guessing game of the market clearing

conditions in the OTC game.

De�nition 2 An equilibrium of the conditional guessing game is given by a strategy pro�le
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�
E1; E2; :::; En

�
such that each agent i chooses strategy E i : R�Rmi ! R in order to maximize

her expected payo¤

max
Ei

n
�E

��
�i � E i

�
si; egi

��2 ��si; egi �o ;
where e =�(�; s).

As in the OTC game, we simplify this optimization problem and �nd the guess functions

E i
�
si; egi

�
point-by-point. That is, for each realization of the signals, s, an agent i chooses

a guess that maximizes her expected pro�ts, given her information, si, and given the guess

functions chosen by the other agents. Her optimal guess function is then given by

E i
�
si; egi

�
= E

�
�ijsi; egi

�
: (17)

In the next proposition, we state that the guessing game has an equilibrium in any network.

Proposition 1 In the conditional guessing game, for any network g, there exists an equilibrium

in linear guess functions, such that

E i
�
si; egi

�
= �yisi + �zgiegi

for any i, where �yi is a scalar and �zgi =
�
�ziij

�
j2gi

is a row vector of length mi.

We derive the equilibrium in the conditional guessing game as a �xed point problem in the

space of n� n matrices. In particular, consider an arbitrary n� n matrix
0
V =

� 0

vi
�
i=1;::n

and

let the guess of each agent i be

0
e
i
=

0

vis; (18)

given a realization of the signals s. It follows that, when dealer j takes as given the choices of

her neighbors,
0
egj , her best response guess is

00

ej = E
�
�j jsj ;

0
egj
�
: (19)

Since each element of
0
egj is a linear function of the signals and the conditional expectation is

a linear operator for jointly normally distributed variables, equation (19) implies that there is
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a unique vector
00

vj , such that
00

ej =
00

vjs: (20)

In other words, the conditional expectation operator de�nes a mapping from the n� n matrix
0
V =

� 0

vi
�
i=1;::n

to a new matrix of the same size
00
V =

� 00

vi
�
i=1;::n

. An equilibrium of the

conditional guessing game exists if this mapping has a �xed point. Proposition 1 shows the

existence of a �xed point and describes the equilibrium as given by the coe¢ cients of si and

egi in E
�
�ijsi; egi

�
at this �xed point.

Next, we use the conditional guessing game to establish conditions for the existence of

an equilibrium in the OTC game, we show how to solve for the equilibrium coe¢ cients. In

the following section, we also prove that posterior beliefs of the OTC game coincide with the

equilibrium beliefs in the conditional guessing game.

3.3 Solving for equilibrium coe¢ cients and existence

In this part, we prove the main results of this section. In particular, we provide su¢ cient

conditions under which we can construct an equilibrium of the OTC game building on an

equilibrium of the conditional guessing game.

Proposition 2 Let �yi and �zgi =
�
�ziij

�
j2gi

be the coe¢ cients that support an equilibrium in

the conditional guessing game and let ei = E(�i
��si; egi ) be the corresponding equilibrium ex-

pectation of agent i. Then, there exists a Linear Bayesian Nash equilibrium in the OTC game,

whenever � < 1 and the following system

yi 
1�

P
k2gi

ziik
2�zkki
4�ziikzkki

! = �yi (21)

ziij

2�ziij
4�ziijz

j
ji 

1�
P
k2gi

ziik
2�zkki
4�ziikzkki

! = �ziij ;8j 2 gi

has a solution
n
yi; ziij

o
i=1;::n;j2gi

such that ziij 2 (0; 2). The equilibrium demand functions are
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given by (5) with

tiij = ��ij
2� zjij

ziij + z
j
ji � ziijz

j
ji

: (22)

The equilibrium beliefs are E
�
�ijsi;pgi

�
= yisi +

P
j2gi

ziijpij ; while the equilibrium prices and

quantities are

pij =
tiije

i + tjije
j

tiij + t
j
ij � �ij

(23)

qiij = tiij
�
ei � pij

�
: (24)

The conceptual advantage of our way of constructing the equilibrium over the standard

approach is that it is based on a simpler �xed-point problem. Indeed, in the conditional

guessing game we solve for a �xed point in beliefs. This simpli�es the �xed point problem as

there is only n guessing functions as opposed to
�
�im

i
�
demand functions. Then, the system

of equations (21) ensures we can map n expectations, ei, from the conditional guessing game

into M � n prices in the OTC game, in a consistent way.

Note also that Proposition 2 also describes a simple numerical algorithm to �nd the equi-

librium of the OTC game for any network. In particular, the conditional guessing game gives

parameters �yi and �zij , and conditions (21) imply parameters yi and zij . Making use of (22),

we then obtain the demand functions that imply prices and quantities by (23)-(24).

The next proposition strengthens the existence result for our speci�c examples.

Proposition 3

1. In any network in the circulant family, the equilibrium of the OTC game exists.

2. In a star network, the equilibrium of the OTC game exists.

For the star network and the complete network, closed-form solutions are derived in Ap-

pendix B.

We showed in Proposition 2 that an equilibrium exists when the solution, ziij , of the system

(21) is in the interval (0; 2). As Section 6 illustrates, apart from the networks characterized

in Proposition 3, we found that the equilibrium exists for a large range of parameters for a

wide range of relevant random networks. However, there exist parameters for which in certain
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irregular networks the conditions of Proposition 2 are not satis�ed. We report and explain the

simplest such example in Appendix F.6

We conclude this section with the observation that costumers�demand plays a limited role

in our analysis. While there is no equilibrium for �ij = 0, for any choice of �ij < 0; prices,

beliefs and scaled quantities
qiij
�ij
are not a¤ected. We summarize this in the following Corollary.

Corollary 1 Prices, beliefs and scaled quantities,
qiij
�ij
, are independent of the slope of cus-

tomers� demand, �ij. Furthermore, if �ij = �̂ � �̂ij, where each �̂ij is an arbitrary negative

scalar and �̂ is a positive constant, then prices, beliefs and scaled quantities remain constant

and well de�ned as �̂ ! 0. When �̂ = 0, the equilibrium in the OTC game does not exist.

This result follows immediately from (22) and (24). Clearly, beliefs must be independent

of customers�demand as they can be derived from the conditional guessing game where there

are no customers. Quantities, qiij , are proportional to �ij ; because trading intensities, t
i
ij , are.

This is immediate from the fact that �ij is a parallel shift in expression (12), which drives the

equilibrium trading intensities.

Intuitively, we need a non-zero �ij as
1
�ij
serves as a �nite upper bound for the price impact

of an additional unit supplied in a transaction between i and j. This is apparent from (9). To

see why this is essential, it is useful to think about equation (26) as a best response function for

trading intensities. If �ij were 0, then counterparties�best responses would converge to zero

as j(1� zij)j < 1 by the conditions required in Proposition 2. That is, trade would collapse.

This is a well known property of similar games (e.g., Kyle (1989) for the case of two agents).

Based on Corollary 1, we argue that the exogenous demand from customers solves this technical

problem with minimal impact on the results.

4 Information Di¤usion

In this section, we discuss informational properties of prices in the OTC market. First, we

characterize the role of the market structure in the di¤usion of information through prices.

6 In these cases, there is at least one agent who puts negative weight on at least one of her neighbours�
expectations, that is, �ziij < 0 for some i and ij. This is possible as the correlation between �

i and ej , conditional
on all the other expectations of i0s neighbours and si might be negative. While this is still a valid equilbrium
of the conditional guessing game, it results in a negative ziij in the OTC game, which violates the second-order
conditons.
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Second, we introduce a measure of informational e¢ ciency and highlight ine¢ ciencies in how

agents learn from prices.

4.1 Prices and Information Di¤usion

We study how the market structure a¤ects the di¤usion of information through the network

or trades. For this, we analyze two dimensions. First, we are interested in �nding out to what

extent the ability of agents to behave strategically and impact prices in�uences how much

information gets revealed. Second, we investigate how the network structure interacts with the

role of prices as information aggregators.

To evaluate the role of agents� strategic motives when trading, the conditional guessing

game is a useful benchmark. This is because any considerations related to price manipulation

are not present in the conditional guessing game. We establish the following result.

Proposition 4 In any Linear Bayesian Nash equilibrium of the OTC game the vector with

elements ei de�ned as

ei = E(�i
��si;pgi )

is an equilibrium expectation vector in the conditional guessing game.

The idea behind this proposition is as follows. We have already shown that in a linear equi-

librium, each bilateral price pij is a linear combination of the posteriors of i and j; E(�i
��si;pgi )

and E(�j
��sj ;pgj ), as described in (14). Therefore, in each transaction, given that a dealer

knows her own belief, the price reveals the belief of her counterparty. Thus, when a dealer

chooses her generalized demand function, she essentially conditions her expectation about the

asset value on the expectations of the other dealers she is trading with. Consequently, the set

of posteriors implied in the OTC game works also as an equilibrium in the conditional guessing

game.

The equivalence of beliefs on the two games implies that any feature of the beliefs in the

OTC game must be unrelated in any way to price manipulation, market power or other pro�t

related motives.

Next, we analyze the role of the network structure in how prices aggregate information. We

obtain the following result for general connected networks.
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Proposition 5 Suppose that there exists an equilibrium in the OTC game. Then in any con-

nected network g, each bilateral price is a linear combination of all signals in the economy, with

strictly positive weight on each signal.

This result suggests that a decentralized trading structure can be surprisingly e¤ective in

transmitting information. Indeed, although we consider only a single round of transactions,

each price partially incorporates all the private signals in the economy. A simple way to see

this is to consider the residual demand curve and its intercept, Iiij , de�ned in (8)-(9). This

intercept is stochastic and informationally equivalent with the price pij . The chain structure

embedded in the de�nition of Iiij is critical. The price pij gives information on I
j
i , which gives

some information on the prices agent j trades at in equilibrium. For example, if agent j trades

with agent k then pjk a¤ects pij : By the same logic, pjk in turn is a¤ected by the prices agent

k trades at with her counterparties, etc. Therefore, pij aggregates the private information of

signals of every agent, dealer i is indirectly connected to, even if this connection is through

several intermediaries.

Typically, however, dealers in the OTC market do not learn from prices all the relevant

information in the economy. This is because in a network g, a dealer i can use only mi linear

combinations of the vector of signals, s, to infer the informational content of the other (n� 1)

signals. In contrast, as Vives (2011) shows, in a centralized market in which each agent chooses

one demand function and the market clears at a single price, a dealer i learns all the relevant

information in the economy, and her posterior belief is given by E
�
�ijs
�
:

There are two special cases when the prices are privately fully revealing if agents trade

over the counter. In our context, the equilibrium prices are privately fully revealing if for each

dealer i, (si;pgi) is a su¢ cient statistic of the vector of signals s, in the estimation of �
i. The

following result describes these cases.

Proposition 6

1. In the complete network, prices are privately fully revealing.

2. In any connected network, g, prices are privately fully revealing when �! 1.

The �rst case follows immediately. In a complete network, each agent has mi = n � 1
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neighbors, thus she observes n � 1 prices. Given that she know her own signal, she can in

equilibrium invert the prices to obtain the signals of the other dealers.

The second case in Proposition 6 shows that in the common value limit, the network

structure does not impose any friction on the information transmission process in any network.

To shed more light on the intuition behind the latter result, we appeal to Proposition 4 and

build intuition based on the learning process in the conditional guessing game.

Consider the case when �! 1. As the private value component in �i vanishes, if any dealer

could observe all the signals, their best guess would be E
�
�ijs
�
=

�2�
n�2�+�

2
"
1>s. Therefore, in the

conditional game, if dealer i could learn the sum of signals, 1>s, from her neighbors�guesses,

egi , her guess would converge to e
i =

�2�
n�2�+�

2
"
1>s. At the same time, dealer�s i guess reveals

1>s to all her neighbors. That is, the guess ei = �2�
n�2�+�

2
"
1>s is a �xed point of the system (18)-

(20). Hence, this is an equilibrium of the conditional guessing game. Since the equilibrium is

continuos in �, by Proposition 4, information is fully revealed in the OTC game as well when

� ! 1. Nevertheless, following the argument in Vives (2011), there is no equilibrium of the

OTC game exactly at � = 1. The reason is that if the price reveals the common value, then

no dealer has an incentive to put any weight on her signal. A paradox arises as then the price

cannot contain any information.

4.2 Informational E¢ ciency

In this section we discuss the informational e¢ ciency of prices. We defer the discussion on

allocative ine¢ ciency to Section 5.

As we have seen above, information is generally not fully revealed in the equilibrium of the

OTC trading game, apart from the two cases discussed in Proposition 6. Moreover, no single

price fully reveals all the information, except in the common value limit. Thus, we propose

a measure of informational e¢ ciency based on dealers�beliefs, taking into account that their

learning is constrained by the network structure. More precisely, we exploit the equivalence

of beliefs in Proposition 4 and de�ne a measure of constrained informational e¢ ciency as the

negative sum of squared deviations from the true value,

U
��
�yi;�zgi

	
i2f1;:::ng

�
� �E

"X
i

�
�i � E i

�
si; egi

��2����� s
#
; (25)

20



where E i (�) is the guess function of a dealer i in the conditional guessing game. Then, we can

�nd conditional guessing functions
�
E i
�
si; egi

�	
i=1:::n

which would maximize our measure of

constrained informational e¢ ciency (25) subject to e = � (�; s) and (16). This is the planner�s

solution in the conditional guessing game. Alternatively, we can also look for marginal devia-

tions in dealer�s equilibrium strategies in the conditional guessing game (which, by Proposition

2, would correspond to marginal deviations from equilibrium strategies in the OTC game)

which would improve constrained informational e¢ ciency.

In general, we �nd that beliefs are not constrained informationally e¢ cient. We illustrate

the underlying informational externality on the circle and star networks in this section, and

show that this observation is robust to a large set of random networks in Section 6.

Since in a circle all dealers are symmetric, and each can learn only from two prices, this is the

simplest example to recover the learning externality that leads to informational ine¢ ciencies.

To see the intuition, we use expressions (18)-(20) as an iterated algorithm of best responses.

That is, in the �rst round, each agent i receives an initial vector of guesses,
0
egi, from her

neighbors. Given this, each agent i chooses her best guess,
00

ei, as in (19). The vector of

guesses
00
egi , with elements given by (20), is the starting point for i in the following round.

By de�nition, if the algorithm converges to a �xed point, then this is an equilibrium of the

conditional guessing game.

We chose an example with eleven dealers to have a su¢ cient number of iterations. We

illustrate the iteration rounds in Figure 1 from the point of view of dealer 6. We plot the

weights with which signals are incorporated in the guess of dealer 5, 6 and 7, i.e. v5;v6;v7.

In each �gure, the dashed lines show the posteriors of dealer 5 and 7 at the beginning of each

round, and the solid line shows the posterior of agent 6 at the end of each round after she

observes her neighbors�guesses. We start the algorithm by assuming that the posteriors of

dealer 5 and 7 are the posteriors in the common value limit, �2�
n�2�+�

2
"
1>s, as illustrated by the

straight dashed lines that overlap in panel A. The best response guess of dealer 6 at the end

of round 1 is shown by the solid line peaking at s6 in Panel A. The reason dealer 6 puts more

weight on her signal, s6, is that it is more informative about her value, �6, than the rest of the

signals. Clearly, this is not a �xed point as all other agents choose their guesses in the same

way. Thus, in round 2, agent 6 observes posteriors that are represented by the dashed lines

shown on Panel B; these are the mirror images of the round�1 guess of dealer 6. Note that the
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posteriors that dealers 5 and 7 hold at the beginning of round 2 are less informative for dealer 6

than the equal-weighted sum of signals �2�
n�2�+�

2
"
1>s. The reason is that, for dealer 6, her signal

together with the equal-weighted sum of signals is a su¢ cient statistic for all the information

in the economy. Thus, while in round 1 she learned everything she wanted to learn, in round

2 she cannot. The weight that dealer 5 and 7 place on their own private signals �jams� the

information content of the guesses that dealer 6 observes. Nevertheless, the round�2 guesses

are informative, and dealer 6 updates her posterior by placing a larger weight on her own

signal, as the solid line on Panel B shows. Since all other agents update their posterior in a

similar way, the guesses that dealer 6 observes in round 3 are a mirror image of her own guess,

as shown by the dashed lines in Panel C. The solid line in Panel C represents dealer 6�s guess

in round 4. On Panel D, we depict the guess of dealer 6 in each round until round 5, where we

reach the �xed point.

Figure 1: Best responses in the conditional guessing game in a ring network. Panel A shows
of player 6�s best response weight on each signal when her neihbours�guess weighs each signal

uniformly at �2�
n�2�+�

2
"
1>: Panel B-D shows further iterations of best responses. Panel D also

shows the planner�s solution. Parameters are n = 11; � = 0:8; �2� = �
2
" = 1; �ij = �1:

22



The thick dashed curve in the last panel of Figure 1 shows the optimal weights on each

signal in the belief of dealer 6 in the planner�s solution. As is apparent, the dealer places more

weight on her own signal in equilibrium than what is informationally e¢ cient. The reason is

that each agent�s conditional guess function a¤ects how much her neighbors can learn from her

guess. This, in turn, a¤ects the learning of her neighbors�neighbors, etc. Although dealers

optimally choose guesses that are tilted towards their own signals, they do not internalize that

they distort the informational content of these guesses for others.

In the following proposition, we show that this observation is not unique to the example.

Indeed, in any star network, the sum of payo¤s would increase if, starting from the decentralized

equilibrium, both central and periphery dealers would put less weight on their respective signal

and more weight on their neighbors�guesses.

Proposition 7 Let U
��
�yi;�zgi

	
i2f1;:::ng

�
be the sum of payo¤s in an star network for any given

strategy pro�le
�
�yi;�zgi

	
i2f1;:::ng : Then, if

n
�yi�;�z�

gi

o
i2f1;:::ng

is the decentralized equilibrium,

then

lim
�!0

@U

�n
�yi� � �;�z�

gi
+ �1

o
i2f1;:::ng

�
@�

> 0:

That is, starting from the equilibrium solution, marginally decreasing weights on a dealer�s sig-

nal, while marginally increasing weights on other dealers�guesses increases the sum of payo¤s.

The intuition we provide about why dealers overweight their signal in a circle network is

informative as well about why the central dealers overweight their signal in a star network.

The planner would prefer the central dealer to put less weight on her own signal, as this would

make her guess more informative on the common value component, that is, more useful for

the periphery agents. In turn, once the guess of the central agent is more informative, the

periphery agents should put more weight on that and less on their own signal. This explains

why periphery agents overweight their signal in the decentralized solution.

Note that this informational ine¢ ciency does not arise as a result of imperfect competition,

or strategic trading motives that agents have. Indeed, the equivalence between dealers�beliefs

in the conditional guessing game and in the OTC game implies that this is not the case.

Instead, it is a consequence of the learning externality arising from the interaction between the

interdependent value environment and the network structure.
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An interesting question is whether the informational ine¢ ciency can be corrected to some

degree. It is a reasonable conjecture that when signals are costly to acquire, dealers may

put less weight on their signal relative to the information they learn from prices than when

the signals are costless. However, how dealers would best respond to each others�choices of

information precision, how the properties of the remaining equilibrium would change with the

network structure, and how it would compare to the planner�s solution are non-trivial questions

which we leave for future research.

5 Pro�t, welfare, and illiquidity

In this section, we provide insights on how the OTC market structure and adverse selection

a¤ect dealers expected pro�t, welfare, and illiquidity. First, we make general observations

about the intuition driving these objects in any network. Then we proceed to give further

insights by analyzing the most common OTC networks. In particular, we isolate the e¤ect

of decentralization by comparing the complete OTC network with centralized markets; we

illustrate the role of link density by comparing circulant OTC networks in which we successively

increase the number of links each dealer has; and we analyze the e¤ect of asymmetric number

of links in the star OTC network.

To keep the market structures comparable, we assume that dealers have an identically sized

customer pool. To simplify the welfare analysis, we assume that dealers charge a zero mark-up.

As before, a dealer i in the OTC market uses each link ij to satisfy an exogenous fraction of her

customer base. This implies that in the centralized market, the absolute slope of the customers

demand is ��V = nB, while in any OTC markets with K total links the customers�demand in

any transaction between dealer i and j is ��ij = nB
K , where B > 0 is an exogenous constant.

Section 6 complements this analysis by checking the robustness of our insights on realistic

random networks.

5.1 General observations

Before the formal analysis, it is instructive to explain the intuition on what might determine

traders�pro�t and total welfare in our economy. First of all, recall that each dealer is risk

neutral and their valuation has a private component. This implies that if all dealers would take
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unboundedly large negative or positive positions, that could lead to unboundedly large expected

pro�t and welfare. As an illustration, consider the following (non-equilibrium) allocation. Let

the posterior expectations ei be determined in the equilibrium of the conditional guessing game

and let prices and traded quantities be �xed at

pij =
ei + ej

2
; qiij = t

�
ei � pij

�
;

where the trading intensity, t, is the same arbitrary positive constant for each agent. It is easy

to check that as each dealer trades in the direction of her posterior, increasing t without bound

would increase expected pro�t and total welfare without bound.

In equilibrium, dealers do not take in�nite positions as they are concerned about adverse

selection. While expressions (23) and (24) for prices and quantities are similar to the thought

experiment above, the trading intensity of each dealer, tiij , is determined as in equilibrium from

the best response function given by expressions (11) and

tiij = t
j
ij

�
1� zjij

�
� �ij : (26)

Since the coe¢ cients of prices in posteriors, zjij , depend on the network structure, the trading

intensities depend as well. By solving for the trading intensities while keeping zjij and z
i
ij

constant, we obtain the equilibrium expression (22). Note that this expression implies
@tiij

@zjij
< 0.

That is, the trading intensity of dealer i is smaller if her counterparty puts a larger weight on

the price pij when forming her expectation. We should expect z
j
ij to be higher when the price

pij is a more important source of information for j because either i observes more prices, j

observes fewer prices, or the correlation across values is small. Therefore, zjij is a natural

measure of how much dealer j is concerned about adverse selection when trading with dealer i.

As 1
tiij
is the price impact of a unit of trade of i at link ij, another way to rephrase our

observations is that the more j is concerned about adverse selection, the less liquid the trade

is for dealer i. Hence, she trades with a lower trading intensity. Averaging 1
tiij
over the links

of i provides a natural, dealer-level illiquidity measure we use to compare illiquidity across

market structures from i�s perspective. We use illiquidity, cost of trading, and price impact

interchangeably.
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We naturally expect the average pro�t of dealer i

E

0@X
ij2gi

qiij
�
�i � pij

�1A =
X
ij2gi

tiijE
��
ei � pij

�2�
; (27)

to increase with the number of links as this implies both more opportunities to trade and

intermediate, as well as larger trading intensities. While the expected pro�t also depends on

the gains per unit of trade, E
��
ei � pij

�2� at each link, we �nd in all our examples that
variation in trading intensities and the opportunities for intermediation are the driving forces.

To compare welfare implied by di¤erent dealer networks, we also need the expected utility

of customers. Customers�expected utility at link ij is proportional to the variance of the price

pij since

E

0B@
�
�
�
qjij + q

i
ij

��2
2�ij

+
�
qiij + q

j
ij

�
pij

1CA =
�ij
2
E
�
p2ij
�
� �ijE

�
p2ij
�
= �

�ij
2
E
�
p2ij
�
; (28)

as it follows from market clearing. Hence, total welfare is the sum of pro�ts and customers�

utility summed over each link of the network

X
ij2g

�
�
�ij
2
E (pij)

2 + E
�
qiij
�
�i � pij

��
+ E

�
qjij
�
�j � pij

���
: (29)

Finally, note that from (23) it is immediate that price dispersion arises naturally in this

model. A dealer with multiple trading partners is trading the same asset at various prices,

because she is facing di¤erent demand curves along each link. Just as a monopolist does in

a standard price-discrimination setting, this dealer sets a higher price in the market where

demand is higher. In fact, from (23), we can foresee that the price dispersion in our framework

must be closely related to the dispersion of posterior beliefs.

5.2 The e¤ect of decentralized trading: the centralized and the complete

network OTC market

Comparing the equilibrium in a centralized market as described in Vives (2011) with the

equilibrium in the OTC complete network isolates the e¤ect of trade decentralization. While in
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both cases posterior expectations are the same (and e¢ ciently incorporate all the information

in the market) and each trader can trade with all the others, still, prices, allocations, and

welfare di¤er. The main observation in this part is that the e¤ect of trade decentralization

on welfare and illiquidity is ambiguous. Close to the common value limit, the OTC market

is more liquid and provides higher total welfare than the centralized market, while for lower

correlations across values typically the opposite is true.

In Appendix B.1 we report closed-form solutions for the price, pV , quantity, qV , and the

price coe¢ cient in expectations, zV , for centralized markets (i.e., Vives (2011)). The trading

intensity of a dealer in a centralized market is given by tV =
��V

n(zV �1)+2�zV , which is the �xed

point of expression

ti = (n� 1) t�i
�
1� z�iV

�
� �V : (30)

Equation 30 shows how the trading intensity, ti, of dealer i responds to the trading intensity

of all other agents, t�i, and to their adverse selection concern, z�iV . This is the centralized

counterpart of (26). Expected pro�t and welfare are calculated by trivial modi�cations of (27)

and (29).

Importantly, Vives (2011) shows that there is linear equilibrium in centralized markets, if

and only if 1� 1
n�1 < zV . Just as we argued above, with risk-neutral dealers adverse selection

concerns determine the slope of demand curves. It turns out that in a centralized market

this concern has to be su¢ ciently strong, otherwise an equilibrium with �nite slopes cannot

be sustained. (The same condition is also required in for an equilibrium to exist in an OTC

market. However, with bilateral trades it reduces to 0 < zjij .)

In a complete network, trading intensity is tjij = t
i
ij = tCN = ��CN 1

zCN
and a closed-form

for the adverse selection parameter zCN is given in Appendix B.3. Also, as we explained,

we keep the total mass of customers constant across the two market structures, implying

��CN = 2B
n�1 and ��V = Bn for some B > 0:

Panels A-D in Figure 2 illustrate how dealers�pro�t, customers�utility, illiquidity and total

welfare compare across the two markets for di¤erent values of �, �xing all the other parameters.

Also, in the next proposition, we state the general claims corresponding to these �gures. Then,

we discuss the mechanisms behind the results.

Proposition 8 Comparing a centralized market with a complete network OTC market
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1. When � or �2"
�2�
is su¢ ciently low, such that zV converges to 1 � 1

1�n from above, total

welfare, and dealers�pro�ts are larger and illiquidity is smaller in the centralized market.

2. When � is su¢ ciently close to 1, then

(a) total welfare and customers� utility are higher and illiquidity is lower in the OTC

market, while

(b) dealers�pro�ts are higher in the centralized market.

The intuition is as follows. Observe �rst that as zV ! 1� 1
n�1 from above, trading intensity

grows without bound, tV !1, and illiquidity falls to zero. As in the centralized market, the

information content of the price is increasing with � and �2"
�2�
, and so does zV . This implies

that for su¢ ciently low � and �2"
�2�
, welfare and dealers�pro�t are increasing without bound in

a centralized market. This is so, because as adverse selection gets weaker, dealers are ready to

take on very large bets. Because the private value component implies gains from trade, these

large trades translate into high expected pro�t and high welfare. Given that quantities and

pro�ts are �nite in the OTC market as long as � is not close to 0, it immediately follows that

at least when zV is close to 1 � 1
n�1 , pro�t and welfare are larger, and illiquidity is lower in

centralized markets.

Perhaps more surprising is that in the common value limit, when � is close to 1, total

welfare is higher and illiquidity is lower in the OTC market than in the centralized market.

We start with the result on illiquidity. There are two forces that drive this result. First, even

if the parameter z were the same under the two market structures, mechanical di¤erences in

best responses in (30) and (26) would lead to a di¤erent outcome. Namely, the absolute values

of both the slope and and the intercept of best responses are higher in the centralized market.

The slope is higher because the aggregate response of (n� 1) counterparties is larger than that

of a single counterparty, while the intercept is higher because all customers are present in the

centralized market: ��V = Bn > 2B
n�1 = ��CN . While slope and intercept have opposite

e¤ects, simple algebra shows that the sum of these forces would result in higher illiquidity in

the OTC market as
1
tV
1

tCN

jzv=zCN=z < 1, as long as we keep the weight on the price, z, the same

under the two market structures.

Second, however, the single price in the centralized market aggregates more information
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than each of the individual prices separately in the OTC market. Indeed, it is easy to check

that zCN < zV for any parameter values. This tends to make illiquidity higher in the OTC

market. Note that increasing the ratio zV
zCN

increases illiquidity in the centralized market

relative to the OTC market as

@
1
tV
1

tCN

j zV
zCN

=x

@x
=

@
� 2B
n�1

1
z

�nB
n(xz�1)+2�zx

@x
> 0:

As zV
zCN

is monotonically increasing in �, this force is strongest at the common value limit. As

we prove in the proposition, this e¤ect is su¢ cient to make illiquidity higher for in OTC market

in the common value limit.

To understand the result on welfare, we start by comparing customers utility. Note �rst

that the ratio of costumers�utility in the complete network OTC market and the centralized

market is the ratio of the price variance in each market:
B
n�1

n(n�1)
2

E(p2CN)
nB
2
E(p2V )

=
E(p2CN)
E(p2V )

: Also, in

the common value limit, the price variance is larger under the OTC structure as

lim
�!1

E
�
p2CN

�
E
�
p2V
� = lim

�!1

�
1

2+zCN

�2
4
�
V
�
ei
�
+ V

�
ei; ej

��
�

1
2+(n�1)zV

�2
2n (V (ei) + (n� 1)V (ei; ej))

=

�
2n� 3
n� 1

�2
> 1:

As is apparent from the second expression above, there are two forces. On the one hand, in

a centralized market the variance of the price is connected to the variance of the sum of all

expectations, while on an OTC market it is connected to the variance of the sum of the two

expectations at each link. The �rst one is higher, which makes costumers� expected utility

higher on centralized markets. On the other hand, as zV > zCN , the multiplier coming from

trading intensities tends to push customers�utility higher on the OTC market. The ratio zV
zCN

is maximal in the common value limit, and the second force turns out to dominate the �rst.

So in this limit, the utility is higher under the OTC structure. As Panels A-D in Figure 2

demonstrate, when � is smaller, the �rst force might dominate, implying that utility tends to

be larger under the centralized structure.

Finally, we explain why welfare is higher, but expected pro�t of dealers is lower in the OTC

market in the common value limit. For this, let us rewrite the general formula for welfare, (29),
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as the sum of the value of allocations to dealers and customers

X
ij

�
E
�
qiij�

i
�
+ E

�
qjij�

j
�
�
�ij
2
E (pij)

2 :

�
(31)

Substituting in the closed-form expressions and taking the limit, it is easy to show that the sum

of terms corresponding to dealers is actually larger in the OTC market than in the centralized

market in the common value limit � ! 1. This is due to the larger trading intensity in OTC

markets in this limit. The di¤erence between formulas (29) and (31) represents, essentially,

a transfer from dealers to customers. Since this transfer is larger under the OTC market

structure, this explains the why welfare and pro�t move in opposite directions. As is apparent

from the middle expression in (28), the total transfer is
P
ij

�
��ijE

�
p2ij

��
, twice the utility

of customers, which, as we argued above, is indeed higher in the OTC complete network than

in the centralized market in the common value limit.

5.3 The e¤ect of more links: circulant networks with varying density

Panels A-D in Figure 2 also plot how welfare, customers�utility, dealers�pro�t and illiquidity

compares in various (n; k)-circulants. With fewer links, welfare and customers�utility tends to

decrease and illiquidity tends to increase, while dealers�pro�t might go either way.

As there are no explicit solutions for the conditional guessing game for circulant networks,

we do not have analytical results for the circulant OTC networks either. Still, because of

the symmetry, the intuition behind the numerical results is relatively simple. Decreasing the

number of links in symmetric fashion has two main e¤ects: each dealer learns less and each

dealer has fewer opportunities to trade and intermediate. Learning less implies more concern

about adverse selection, lower trading intensities on average, higher illiquidity and smaller

variance of prices at each link (as fewer links implies lower variation in expectations as weights

on the common prior increase and weights on signals decrease). Fewer opportunities to trade

and smaller trading intensities imply smaller trading volume which is the dominating force in

reduced welfare. The lower price variance implies reduced customers�utility and, by the logic

explained above, smaller total transfer from dealers to customers. Pro�ts can go either way,

because the net e¤ect of less trade and smaller transfers is ambiguous. As we see in the �gure,

close to the common value limit, less dense networks might be more pro�table for dealers.
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Figure 2: Expected pro�t, expected welfare, expected consumer utility, average trading cost
(illiquidity) per trader in various networks. Parameters: n = 9; B = 1; �2� = 0:1; �

2
" = 1:

5.4 The e¤ect of asymmetry: periphery and the central dealer in a star

network

The star network is an ideal case to study the e¤ect of asymmetry on allocations and welfare.

The main result in this part is that central agents do not always earn higher expected pro�t

than periphery agents. In fact, expected pro�t is higher for periphery agents in the common

value limit.

Simple, closed-form solutions that characterize the equilibrium in a star network are spelled

out in Appendix B. The next proposition and Panels E-F in Figure 2 show analytical and

numerical results concerning illiquidity, pro�t, and welfare.
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Proposition 9 In a star network the following statements hold

1. The adverse selection concern and the trading intensity of periphery traders are higher,

zP > zC , tP > tC ; or, equivalently, the central dealer faces a more illiquid market than

the periphery dealers for any �:

2. In the common value limit, � ! 1, central dealer�s pro�t converge to zero while the

periphery dealer�s pro�t is bounded away from zero as tP ! ��, tC ! 0:

We start by comparing the trading intensities, tP and tC . As we noted before, for the

central agent prices are privately fully revealing. That is, her posterior belief is the same as the

belief of dealers in a complete network or in a centralized market. In contrast, the learning of

periphery dealers is limited by the fact that they observe a single price only. As a result, the

weight that a periphery dealer puts on the price is larger than the weight the central dealer

puts on the same price, so zP > zC always holds. Intuitively, the periphery dealer is more

concerned about adverse selection than the central dealer as the central dealer knows more.

Therefore, from (22) the trading intensity of periphery traders is always larger as

tP
tC
=
2� zC
2� zP

> 1:

Hence, at each link the central dealer trades with a smaller intensity, or, equivalently the market

is less liquid for the central dealer than for the periphery dealer.

Importantly, the �rst part of Proposition 9 suggests a negative relationship between a

dealer�s cost of trading and the number of her counterparties� links. The star is a special

case, in the sense that there is a strong negative relationship between the number of a dealer�s

links and the average number of her counterparties�links. Indeed, the assortativity coe¢ cient

in a star is minimal at �1. This is why, in the case of the star, this negative relationship

translates into a higher cost of trading for central dealer. In contrast, in more general core-

periphery networks the average number of links of more connected dealers�counterparties is

often higher.7 Indeed, in our calibrated simulations in Section 6 the assortativity coe¢ cient

7Consider the example of the network of 15 dealers, where 5 central dealers are connected in a complete
network, each of them is connected with one mid-level dealer, and each mid-level dealer is also connected with
one periphery dealer.
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tends to be positive, and, consistently, there is a negative relationship between number of own

links and cost of trading.

Now we turn to pro�ts and allocations in the star network. While the central dealer trades

with less intensity, she also trades and intermediates across more links and, by (23), the distance

between her expectation and the price is larger than for the periphery dealer. As is illustrated

in Panels E-F in Figure 2, for a large set of parameter values, the e¤ect of the smaller trading

intensity is dominated, and trading as a central agent is more pro�table in expectation than

as a periphery agent. However, this is not always the case. As is apparent in the �gure, this

statement is reversed as we approach the common value limit. In fact, in the limit the expected

pro�t of the central dealer is zero, while it is strictly positive for periphery dealers as we state

in Proposition 9. Again, this is related to the strong negative assortativity in a star.

To see the intuition, it is illustrative to spell out how pro�ts are determined close to the

common value limit. In the limit, all dealers put diminishing weight on their own signal as

they form expectations. Instead, in the conditional guessing game as �! 1, periphery dealers

put a weight of �zP ! 1 on the expectation of the central dealer, while the central dealer puts

equal weight on each of the periphery agents� expectations, implying �zC ! 1
n�1 . Thus, by

Proposition 9, as we approach the common value limit in the OTC game, this implies trading

intensities of tP ! ��, tC ! 0. That is, central dealers do not trade in this limit at all, and

periphery dealers trade only with customers. In the common value limit, the central agent

has better information about the common value of the asset than periphery agents. So, as a

manifestation of the no-trade theorem, there cannot be an equilibrium where these agents trade

with each other. Therefore, the only remaining question is who trades with the customers. As

periphery agents are more concerned about adverse selection, the price impact of the central

dealer is larger. This implies that there is a price-quantity pair at which the central dealer

stops trading, but at which the periphery dealer is still willing to trade. This results in positive

trade between periphery and customers only.
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6 Simulated OTC markets: Informational trades in realistic

networks

An attractive feature of our model is that it generates a rich set of empirical predictions. As

we emphasize in this section, for any given information structure and dealer network, our

model generates the full list of demand curves and the joint distribution of bilateral prices and

quantities, and measures of price dispersion, intermediation, trading volume, etc. Therefore,

in principle, our results could be compared to established and to-be-established stylized facts

from the growing empirical literature using transaction-level OTC data. This way, our model

can be useful to determine whether dealers�asymmetric information explains stylized facts in

particular markets, during certain episodes.

To illustrate this feature, we present some of the robust implications of our model for the

relationship between the standard �nancial indicators, such as trading cost, price dispersion,

size of trades, pro�tability, intermediation and characteristics of the dealer network. Our basic

approach is to (1) spell out how these �nancial indicators and network characteristics should

be related based on our theory; (2) show that these relationships hold in a sample of random

networks calibrated to European CDS markets; (3) show that they remain robust as we change

the characteristics of the underlying network.

We introduce the ingredients of this exercise in the following subsections.

6.1 Centrality, �nancial indicators, and informational e¢ ciency

We start by de�ning the model equivalents of the �nancial indicators of interest building on

the analysis in 5.1. We distinguish between dealer-level �nancial indicators and market-wide

�nancial indicators.

The dealer-level �nancial indicators we consider are trading cost (or illiquidity), gross vol-

ume, intermediation, expected pro�t. As we explained above, a relevant measure of the cost

of trading for i with dealer j is the slope of the inverse demand function of dealer j, 1
tiij
. This

is the price impact of dealer i in a transaction with dealer j, and this measure is closely and

positively related to i�s cost of a round-trip trade, the illiquidity i faces, and the mark-up or i0s

e¤ective spread, measures that are often used in the empirical literature. To obtain a dealer-

speci�c measure of the average trading cost or illiquidity for i, we average this slope across the
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trading partners of i, 1
jgij�ij2gi

1
tiij
.

To measure gross volume for a given dealer, we use E
�
�ij2gj

���qiij����. For intermediation, we
consider the absolute ratio of the expected gross trading volume to the expected net trading

volume

�����E
�
�ij2gi jqiijj

�
E
�
�ij2giq

i
ij

�
����� for a given dealer. Clearly, this ratio is always 1 for a dealer who has

a single link to trade, but can be very large for dealers who trade a lot with their multiple

trading partners, but many of their trades cancel each other.

As a measure of pro�tability, we use the expected pro�t of dealer i: E
�
�ij2giq

i
ij

�
�i � pij

��
.

The market-wide �nancial indicators we consider are two widely observed characteristics of

OTC markets: price dispersion and the concentration of trade. For price dispersion, consider

the correlation matrix of prices in each transaction, Rp. For simplicity, we use the minimum

element of Rp as an inverse measure of price dispersion in a given network: For the concentration

of trade, we use the Gini coe¢ cient for gross volume.

In addition, we characterize informational ine¢ ciency in a given market in two ways. First,

at a dealer level, we measure the precision of a dealer�s posterior (i.e., the inverse of the

conditional variance) normalized by the precision posterior obtained by knowing the joint

information set of all the dealers. At the market level, based on Section 4.2, we measure the

percentage change in the expected sum of squared deviations of the private value and the

posterior of a given dealer, E
hP

i

�
�i � E i

�
si; egi

��2i
, in our equilibrium compared with the

planner�s solution.

Given the insights of the analysis in Section 4 and 5, we expect that more connected dealer

should learn more, intermediate more, trade larger gross volume at lower cost, and make more

pro�t. (In the networks we simulate, we �nd a positive correlation across the number of links

of a dealer and the number of links of her counterparty. In this case, the intuition we developed

in Section 5.4 informs us that more central dealers should trade at a lower price impact.)

6.2 The baseline network

In all simulations, we work with the hybrid network formation model of Jackson and Rogers

(2007). In particular, the network formation starts with a small complete network. Then, nodes

are born sequentially. When a new node is born, mR parents are randomly chosen from the

existing nodes with uniform probability. The new node forms a link with any given parent with
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probability p. Then, from the set of existing connections of the parents, mS nodes are chosen

randomly. The new node forms links with any of such-selected neighbors of her parents with

probability p. Hence, in expectation, each node forms m � p (mS +mR) connections where the

ratio of uniformly selected to network based links is r � mR
mS
. We chose this framework as it can

generate intermediate cases between pure core-periphery networks and networks with uniformly

distributed links depending on the ratio of uniform to network-based links. It is parametrized

by parameters m, p, r. When r is small, the resulting networks show core-periphery features,

while when r is very large, the resulting network is close to a random network where each link

is formed with equal probability. We follow the procedure described by Jackson and Rogers

(2007) (see details in Appendix E), and calibrate these parameters to the European CDS

market as described by Brunnermeier, Clerc and Scheicher (2013). In particular, to keep the

exercise computationally manageable, we use their 54-dealer representation, focusing on the

largest positions of the largest traders in the most important assets. The procedure gives us

the baseline parameters of r = 1
3 , m = 8, p = 0:3.

6.3 Simulated standard errors and sensitivity analysis

Given the baseline parameters for the network formation process, we generate 50 random

networks, each with 54 dealers. For each network we calculate three market-wide measures:

price dispersion, concentration of trade, and informational e¢ ciency. We use the informational

parameters � = 0:5, �2� = �2" = 1. At the same time, for each network we run �ve single

variable regressions with dealers� expected pro�t, expected intermediation, average cost of

trade, expected gross volume, and posterior precision as the dependent variables and dealers�

centrality as the independent variable. Thus, we obtain 50 estimates for each market-wide

measure and for each regression coe¢ cient. We interpret the mean over the 50 estimates as

a point-estimate for each market-wide measure and for each regression coe¢ cient, given the

network parametrization. We interpret the range of the coe¢ cients as simulated con�dence

intervals around that point estimate. For example, if we drop the maximal and the minimal

elements from each of the 50 estimates for a given measure, we would get con�dence intervals

of 96% percent. For transparency, we do not drop any coe¢ cient estimate, but plot all.

As a sensitivity analysis for the shape of the network, we generate random networks with

di¤erent r values and di¤erent p values, keeping the size of the network and the average number
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of links �xed. For each set of parameters, we regenerate the 50 random networks, recalculate the

market-wide measures, and re-run the same regressions. Following the same steps as above, we

obtain point-estimates for market-wide measure and each regression coe¢ cient, together with

simulated standard errors, for each parametrization of the network. We report only the results

we obtain by varying r. The results obtained by varying p are reported in the Appendix E.

Observing the overlap of the ranges of the estimates as we vary the parameters is informative

whether or not the variation in parameters has a signi�cant e¤ect on the estimates. For

example, in panel B in Figure 3, the estimated concentration looks signi�cantly larger when

r = 1
3 than when r = 3, as there is minimal overlap in the estimated measures:

Note also, that in the Appendix E, we also report how the coe¢ cients in our regressions

and our market-wide measures change as a function of other characterizations of the underlying

network, e.g., clustering, assortativity and diameter.

6.4 Results

We present our results in panels A-H in Figure 3. The main lesson is that the simulated

con�dence intervals never include 0 for any of our slope coe¢ cients in each of the regressions

and treatments. That is, our observations that more connected dealers trade more, intermediate

more, learn more, trade at lower cost and make more pro�ts are robust to all our sensitivity

checks. We also observe concentrated trades, dispersed prices and informational ine¢ ciency

across all treatments.

In what follows, we assess how our treatments a¤ect the strength of these relationships.

Panels A and B in Figure 3 show the estimates of the market-wide measures of price

dispersion and concentration of trading volume. Price dispersion appears to vary relatively

little with the type of the network. In fact, the range of the estimated price dispersion measures

largely overlap as r, the ratio of uniform to network-based links, changes, suggesting that this

parameter does not have a strong e¤ect on price dispersion. Concentration of gross volume

is relatively high in all treatments. As expected, concentration is larger in a network with

stronger core-periphery features.

Panels C-F in Figure 3 show the slope estimates in regressions with dealer degree centrality

on the right hand side and expected pro�t, intermediation, trading cost, and gross volume on

the left. Clearly, a dealer with more links tends to trade more, at lower cost, make more pro�t,
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Figure 3: Panels A,B and H show the minimal element in the price correlation matrix, the
Gini-coe¢ cient of volume and excess variance compared to the planner�s solution, while C-G
show slope coe¢ cients in regressions of expected pro�t, expected intermediation, average price
impact, gross volume and learning on centrality on simulated networks. Each random network
is generated by the method in Jackson and Rogers (2007) with varying uninform-to-network
based links ratio. For a given r; 50 networks are generated. Each blue circle corresponds to
a network realization, while the red line shows the average for a set of networks with �xed
parameters. Parameters are n = 54; m = 8, p = 0:3;. �2" = �

2
� = 1; � = 0:5:
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and intermediate more. Also, this relationship does not seem to be a¤ected by whether the

network exhibits more or less core-periphery features.

Panels G-H in Figure 3 show that both the fact that the model implies informational

ine¢ ciency and the e¤ect that dealers with more links learn more are robust to our treatments.

Panel G suggests that the e¤ect of r, the ratio of uniform to network-based links is unclear to

the connection between centrality and learning except perhaps for very small r (for which the

e¤ect seems stronger). The ine¢ ciency is larger when the network is closer to a core-periphery

structure. This is because in a core-periphery network, there are agents with many links who

learn a lot compared to the others. Thus, the fact that they do not internalize the potential

social bene�t of others�learning from their actions is more detrimental than in a network where

such agents are less prevalent.

6.5 Simulation results and empirical �ndings

Because of data limitation, studies that connect dealer�s network characteristics with economic

indicators are rare. As an example, Li and Schürho¤ (2014), consistent with our predictions,

also show that central agents in the municipal bond market trade more, their trades are more

pro�table, and they seem to be better informed than others. The positive relationship between

centrality and trading volume is also con�rmed by Roukny, Georg and Battiston (2014) for

a data-set of European CDSs. Holli�eld, Neklyudov and Spatt (2012) shows that central

agents in a securitized loan market intermediate more. Interestingly, these two studies �nd

opposing patterns in terms of the relationship between trading cost (measured as mark-up)

and network position. While Li and Schürho¤ (2014) �nds that in the municipal bond market

more central dealers trade at higher mark-up, Holli�eld, Neklyudov and Spatt (2012) �nds that

in the collateralized loan market more central dealers trade at lower mark-up. Our analysis

suggests that di¤erences in the assortativity of the underlying dealer network might be a simple

explanation for these contrasting facts.

Note that thinking about the underlying trading network structure might be useful even

when the econometrician has only limited information on dealers�characteristics. Indeed, given

our results, we should expect that larger transaction size is associated to smaller cost of trad-

ing, more pro�tability per transactions, less dispersed prices across simultaneous transactions,

but more volatile prices across time periods. The reason is that each of these characterize
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transactions of more connected dealers. From this group of predictions, the pattern that per-

centage cost is decreasing in the size of the transaction is a robust observation in many di¤erent

contexts (see Green, Holli�eld and Schurho¤ (2007) and Li and Schürho¤ (2014) on municipal

bonds and Edwards, Harris and Piwowar (2007) and Randall (2015) on US corporate bonds).

Finally, consistently with our observations Atkeson, Eisfeldt and Weill (2012) and Holli-

�eld, Neklyudov and Spatt (2012) report the CDS and the securitized loan markets are highly

concentrated. While the same is true when US corporate bonds are evaluated in the aggregate,

Schultz (2001) reports that trading in speci�c bonds seems to be spread across multiple dealers.

Our model is silent on these di¤erences.

7 An extension: Illiquidity and learning in segmented markets

Our model can be extended to provide insights about trade in segmented markets as well.

Markets are segmented when investors, such as hedge funds and asset management �rms,

trade in some markets but not in others. Although segmented, markets can be connected, in

the sense that agents are able to trade in multiple venues at the same time.

Formally, we consider an economy in which there areN trading posts connected in a network

g. At each trading post, I, there exist nI risk-neutral dealers. Each dealer i 2 I can trade with

other dealers in her own trading post and with dealers at any trading post J that is connected

with the trading post I by a link IJ . Essentially, the link IJ represents a trading venue in

which dealers at trading posts I and J can trade with each other. However, they have access

to trade in other venues at the same time.

Apart from the market structure, the set-up is unchanged. As before, each dealer�s trading

strategy is a generalized demand function that maps the prices that prevail in markets she

participates in, into a vector of quantities she wishes to trade in each market. We still assume

that each dealer has a mass of B customers implying that the absolute slope of customers�

demand in each trading venue is ��IJ =
B(NnP+nC)

N .

The general set-up is described in detail in Appendix C. While this extension enriches the

analysis in an important dimension, it comes with a loss of tractability. The main technical

di¢ culty that arises when markets are segmented is that the price in each trading venue IJ is a

linear combinations of all dealers beliefs located at trading post I and J , as shown in equation
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(C.11). This implies that the signals of dealers in the same trading post obscure the (sum of)

beliefs of the dealers in neighboring trading posts, such that a dealer can no longer invert the

prices she observes and infer her neighbors posteriors.

Here, we focus the discussion on illustrating the e¤ects of market integration on learning

from prices and market liquidity. For this, we restrict ourselves to considering a star network,

in which there are nP dealers at each periphery trading post, and nC dealers at the central

trading post. In particular, we conduct the following numerical exercise. We consider an

economy with nine agents. Keeping their information set �xed, we compare the following four

market structures:

1. 8 trading posts connected in a star network, with one agent in each trading post (N = 8,

nP = 1, nC = 1), that is, 8 trading venues. This is our baseline model with a star

network.

2. 4 trading posts connected in a star network, with two agents in each periphery node and

one agent in the central node (N = 4, nP = 2, nC = 1), that is, 4 trading venues.

3. 2 trading posts connected in a star network, with four agents in each periphery node and

one agent in the central node (N = 2, nP = 4, nC = 1), that is, 2 trading venues.

4. A centralized market (N = 1, nP = 9, nC = 0), that is, a single trading venue.

We consider two directions. First, we investigate what drives the illiquidity central and pe-

riphery agents face for changing degrees of market segmentation. We concentrate on (il)liquidity

as this is a more commonly reported variable in the empirical literature, and we leave the

analysis of welfare and expected pro�ts to Appendix C. Second, to complement the analysis

in Section 4 , we also analyze how much dealers can learn from prices under these market

structures.

The left and center panels in Figure 4 show the average illiquidity that a periphery, 1
tP
, and

a central dealer, 1
tC
, face in each of the scenarios described above. We also plot the average

illiquidity that any agent in a centralized market, 1
tV
, faces. For easy comparison, all the

parameters are the same as in Section 5.

To highlight the intuition, we start with the extreme cases of market segmentation com-

paring illiquidity under a star network and in a centralized market.
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7.1 Extreme cases of market segmentation

In this part, we compare illiquidity of dealers in a centralized market and that of a periphery

or central dealer in a star network.

The solid curve in Panels D and the curves in panel F in Figure 2 illustrate that compared to

any agent in a centralized market, the central agent in the star faces higher trading price impact

in general, but the periphery agents tend to face smaller price impact when the correlation

across values is su¢ ciently high. We partially prove this result. The following proposition

states that if � is su¢ ciently large, illiquidity for the central agent is larger, while illiquidity

for the periphery agents is lower than that for an agent in a centralized market and, when �

is su¢ ciently small, illiquidity for any agent in a star network is larger than the illiquidity for

any agent in a centralized market.

Proposition 10

1. When � is su¢ ciently small, such that zV is su¢ ciently close to 1� 1
n�1 , then illiquidity

for any agent in a star network is larger than for any agent in a centralized market

2. In the common value limit, when �! 1;

(a) illiquidity for a central agent is higher in a star network than for any agent in a

centralized market, and

(b) illiquidity for a periphery agent is lower in a star network than for any agent in a

centralized market.

Similarly to the comparison between the complete OTC network and the centralized market

in Section 5.2, there are two main forces that drive the illiquidity ratios tVtC and
tV
tP
. First, the

best response function (30) of a dealer in a centralized market is steeper and has a larger

intercept than the best response function (26) of central and periphery dealers in the star OTC

network. Simple algebra shows that if, counterfactually, the adverse selection parameters were

equal, zP = zC = zV then
tV
tC
jzV =zC=zP = tV

tP
jzV =zC=zP > 1, that is, illiquidity for any agents

in the OTC market would be higher than for any agent in the centralized market. This is the

e¤ect which dominates when � is small.
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Second, parameters zC , zV and zP di¤er. As we stated in Proposition 9 central agents face

less liquid markets than periphery agents, 1tP <
1
tC
because periphery agents are more concerned

about adverse selection (zC < zP ). This implies that
tV
tC
> tV

tP
and di¤erence is increasing for

higher �. In fact, in the common value the central agent faces an in�nitely illiquid market

in the sense that tC ! 0, but consumers provide a relatively liquid trading environment for

periphery agents. For periphery agents this is su¢ ciently strong to reduce their price impact

below the centralized market level as stated in the second part of the proposition.

7.2 Intermediate cases of market segmentation

Interestingly, while the illiquidity a central agent faces is monotonic in segmentation, the illiq-

uidity a periphery agents face is not. We see in left panel of Figure 4 is how the relative strength

of the two forces identi�ed in Section 7.1 plays out in the four scenarios we consider. First,

related to the e¤ect of decentralization on best response functions, illiquidity for any agent

decreases as the market structure approaches a centralized market. Second,the e¤ect coming

from the di¤ering weights of zC and zP is weaker in more centralized markets. The reason is

that as central dealers observe less prices in more centralized markets, they put a larger weight,

zC in each price, implying a smaller di¤erence between zP and zC . This is the reason why the

illiquidity a periphery agent faces under the 2 trading venues structure increases with � almost

as fast as in centralized markets. With 4 venues the e¤ect of � is weaker.

Turning to the e¤ect of segmentation on learning, note that for the central dealer prices are

fully revealing under any of the segmented market structures in this exercise. This is because

each price she observes is a weighted sum of her own signal and the sum of signals of the

periphery dealers trading in each venue. Hence, the prices the central dealer observes represent

a su¢ cient statistic for all the useful information in the economy. This would not be the case

if there were more than one dealer at the central trading post.

In contrast, as it is shown in the right panel of Figure 4 a periphery agent in a segmented

market always learns less than the central agent, or any agent in a centralized market. Inter-

estingly, for small correlation across values, �, a periphery agent in a more segmented market

learns more, while for a su¢ ciently large correlation across values the opposite is true. The

intuition relies on the relative strength of opposing forces. The price a periphery agent learns

from is a weighted average of the sum of posteriors of periphery agents in the same trading
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Figure 4: Illiquidity on segmented markets. We show our measure of illiquidity for central
agents , 1

tC
; (left panel) and for periphery agents, 1

tP
; (right panel) when there are 8 trading

venues (dotted), 4 trading venues (dashed), 2 trading venues (dash-dotted), and in the central-
ized market (solid) as a function of the correlation across values, �. Other parameter values
are �2� = 1; �

2
" = 0:1; B = 1:

post and the posterior of the central agent. The posterior of the central agent is more infor-

mative than any of the posteriors that periphery agent at the same trading post have. The

more segmented the market is, the easier is for a dealer at a periphery trading post to isolate

the posterior of the central dealer (for example, in the baseline star network, any price reveals

the posterior of the central dealer perfectly). At the same time, the sum of the posteriors of

periphery dealers at a periphery trading post is more informative in a less segmented market,

as the noise in the signal, as well as the private value components tend to cancel out. This

latter e¤ect helps learning more when the private value component is more important, that is,

when � is small. This explains the pattern in the right panel of Figure 4.

8 Conclusions

In this paper, we have proposed to model trading and information di¤usion in OTC markets.

Dealers trade on a �xed network, and each dealer�s strategy is represented as a quantity-price

schedule. We showed that information di¤usion through prices is una¤ected by dealers�strate-

gic trading motives, that each price partially incorporate the private information of all dealers,

and we identi�ed an informational externality constraining the informativeness of prices. We

also highlighted that trade decentralization per se can both increase or decrease welfare and
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that the main determinant of a dealer�s trading cost is not her centrality but the centrality of

her counterparties. We use extensive simulations to illustrate that more central dealers tend

to learn more, trade more at lower costs and earn higher expected pro�t.

Importantly, trading protocols in OTC markets have become increasingly diverse. Certain

developments in trading protocols improve the �t of our demand submission game. For exam-

ple, in some OTC derivatives markets clients of dealers can request �dealer runs� providing

a menu of potential trades (Du¢ e (2012a)). However, there are also a number of other pro-

tocols (e.g. broker assisted work-up protocols) which our paper does not cover. Given this

increasing diversity, it is important to develop frameworks which put limited emphasis on any

one particular trading protocol, and still can capture robust features of OTC markets. Our

approach emphasizes that links are persistent, that market structure is concentrated, and that

dealers intermediate trade between otherwise disconnected counterparties. Our model yields

price-quantity pairs which are consistent with each dealers information, potential trading part-

ners and objectives. We implicitly suggest that if such pairs exists, it is likely that the market

will converge to these points, independently of the trading protocol.

Demand and supply curves have been a powerful tool to model equilibrium in centralized

good markets since the beginning of economic thinking. With our approach of generalized

demand curves on networks, we have found a way to generate insights for decentralized markets

as well.
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A Appendix: Proofs

In some proofs we use the convention that a network, g, can be represented by an adjacency
matrix A (g) with elements Aij = 1 if ij 2 g, and Aij = 0 if ij =2 g.

Proof of Proposition1

We prove the statement in a more general form than stated. It proves existence for a general
Gaussian information structure. We need only that if !i is a vector of the covariances between
�i and each of the signals (in our case it is !ii = �2� and !ij = ��2� for i 6= j), then !i > 0
for all i: Note that we can rewrite the problem as follows. We are looking for a V � matrix of
which each column vi is the solution of the problem of

max
vi

�
2
�
vi
�>
!i �

�
vi
�>
�vi

�
(A.1)

s.t. vi =
�
�yi + V ��zi

�
ziij = 0() Aij = 0

where � is the covariance matrix of signals, s, and �yi is a column vector with �yi at the i� th
place and 0 otherwise.

To see that this V � exists, let us �rst de�ne the matrix mapping F : Rn�n ! Rn�n, which
maps any n� n matrix V 0 to another one with columns vi de�ned by

vi � argmax
vi

�
2
�
vi
�>
!i �

�
vi
�>
�vi

�
(A.2)

s.t. vi =
�
�yi + V 0�zi

�
ziij = 0() Aij = 0

Further, let

Vi � fvi :
�
vi
�>
�vi � 2

�
vi
�>
!i +

!2ii
�ii

� 0g:

and Vn�n � V1 � V2::� Vn be the set of matrices with columns vi 2 Vi.
We need to show that F is a self map with respect to the set of matrices Vn�n and that

Vn�n is a convex compact set. Hence, the Brouwer �xed-point theorem applies. We proceed
in steps.

1. We show that F de�ned by (A.2) is a self-map.

For this, note that increasing the number of 0-s in the i � th row of A (decreasing the
number of links to i in the network) adds more constraints to the problem (A.2). So we
consider the extreme problem where the i� th row and column of A has only zeros, that
is, each ziij � 0: It is easy to show that in this case the problem reduces to

!2ii
�ii

= max
vii

[2vii!ii � vii�iivii]

with a solution of vii = yi = !ii
�ii

and vij = 0 for all i 6= j: Thus, for any A with non-zero
elements in the i � th row and column, !

2
ii
�ii

is a lower bound on the value agent i can

48



achieve, that is, the solution vi will satisfy !2ii
�ii

� 2
�
vi
�>
!i �

�
vi
�>
�vi. Implying that

for any V0 and A, F projects to Vnxn.

2. Given that the Cartesian product of convex and compact sets is also convex and compact,
we only have to show that each Vi is convex, closed and bounded

(a) Vi is convex. Under the assumption that � is positive de�nite,
�
vi
�>
�vi�2

�
vi
�>
!i

is a convex function (the sum of a convex and a linear function). From the fact that
the sub-level sets of a convex functions are convex, it follows that the set Vi is
convex.

(b) Vi is closed. Let g(vi) =
�
vi
�>
�vi � 2

�
vi
�>
!i +

!2ii
�ii

be a function from Rn to
R. Clearly, g is continuous and Vi � fvi : g(vi) � 0g. Let vin; n = 1:::1 be a
convergent series of vectors in Vi with vi1 being the limit point of this series. Since
g is continuous, we have g(vi1) = limn!1 g(v

i
1) � 0. Hence vi1 2 Vi.

(c) Vi is bounded. Note that the function g(vi) is strictly convex, continuous, and
twice-di¤erentiable. Hence, there exists a minimum vimin that g(v

i
min) � g(vi) for

all vi 2 Vi Also, from the de�nition Vi, g(vi) � 0 for all vi 2 Vi. Note also that g(�)
is strongly convex on Vi as there exists m > 0 such that r2g(v) �mI =2� �mI
is positive de�nite (for example, one can pick m = �2� + �

2
"). Also, from strong

convexity
g(v

00
) � g(v0) +rg(v0)>(v00 � v0) + m

2
jjv00 � v0 jj22:

for any v
0
;v

00 2 Rn: In particular, for v0 = vimin, we have rg(vimin) = 0 implying
that

g(v
00
)� g(vimin) �

m

2
jjv00 � viminjj22:

Let us pick v
00
= vi an arbitrary element of Vi: Then g(v00) � 0 implying

� 2
m
g(vimin) � jjvi � viminjj22

proving the claim.

Proof of Proposition 2 and Corollary 1

Consider an equilibrium of the conditional guessing game in which

E(�i
��si; egi ) = �yisi +X

k2gi
�ziikE(�

k
���sk; egk )

for every i. If the system (21) has a solution, then

E(�i
��si; egi ) = yi 

1�
P
l2gi

ziil
2�zlli
4�ziilzlli

!si +X
k2gi

ziik

2�ziik
4�ziikzkki 

1�
P
l2gi

ziil
2�zlli
4�ziilzlli

!E(�k ���sk; egk ) (A.3)
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holds for every realization of the signals, and for each i. Now we show that choosing the prices
and demand functions (23) and (24) is an equilibrium of the OTC game.

First note that (26) for i and j at a given link implies (22). Also, the choice (24) implies

E(�i
��si; egi ) = yisi +X

k2gi
ziikpij = E(�

i
��si;pgi ): (A.4)

The second equality comes from the fact that the �rst equality holds for any realization of
signals and the projection theorem determines a unique linear combination with this property
for a given set of jointly normally distributed variables. Thus, (24) for each ij link is equivalent
with the corresponding �rst order condition (10). Finally, (A.4) also implies that the bilateral
clearing condition between a dealer i and dealer j that have a link in network g

tiij
�
E(�i

��si;pgi )� pij�+ tjij �E(�j ��sj ;pgj )� pij�+ �ijpij = 0
is equivalent to (23). That concludes the statement.

Corollary 1 follows from the direct observation of (23) and (24) and (22).

Proof of Proposition 3

Case 1: Circulant networks
We provide here a draft of the proof. Further details of each step is available on request.
Step 1 : We show that for circulant networks, each �ziij > 0 for any � 2 (0; 1) :

1. First, we show that �ziij > 0 in the limit �! 0. Clearly when � = 0, the equilibrium V is a
diagonal matrix as the signals of others are uninformative in this pure private value case.
The starting point is to show that for diminishingly small �, the o¤-diagonal elements of
V which are corresponding to �rst neighbors are diminishing at a slower rate than the
rest of the o¤-diagonal elements. In particular, we conjecture and verify that there are
constants a0 and a1 that

lim
�!0

�
V � a0I
�

�
= a1A

where I and A are the identity matrix and the adjacency matrix respectively. For this,
we calculate the matrices �Y and �Z which correspond to a starting matrix V 0 = a0I+a1A
for a given a0 and a1 in problem (A.2), obtain the resulting new matrix V 1 =

�
�Y + �ZV 0

�
,

observe that each non-zero element in �Z, �ziij > 0 are positive, and verify there are indeed

a0 and a1 values for which lim�!0
�
V 1�a0I

�

�
= a1A:

2. Given that all �ziij are positive in this limit, let us counterfactualy assume that there is
� 2 (0; 1) for which at least one �ziij < 0: By continuity, then must be a �0 for which all
�ziij � 0 but at least one of them is zero. But this implies that for these parameters dealer i
�nds the expectation of one of her neighbors uninformative. Let fikgk=1;:::;mi be the set of
i�s neighbors and, without loss of generality, suppose that the index of this neighbor ismi.
The only way this holds is that there is a linear combination of si and

�
eik
	
k=1;:::;(mi�1)
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which replicates eimi , that is, that there is an arbitrary vector [�0; �1::�mi�1], that

�0s
i + �1e

i1 + :::�mi�1e
i(mi�1) = eimi (A.5)

(a) Note that if the network is circulant, there must be an equilibrium where V is also
circulant. To see this, note that problem (A.2) maps circulant networks into circulant
networks. Also, given that we prove the properties of Vn�n vector-by-vector in the
proof of 1, repeating those steps proves the existence of a circulant V �xed point.
Furthermore, in this equilibrium the rows corresponding to the expectation of agent
i and j has to have the structure of vi(i+l) = vi(i�l) = vj(j+l) = vj(j�l) for every l � 0
as long as n � i � l; i + l; j � l; j + l � 1: This is, the weight of each signal in the
equilibrium expectation of a given dealer can depend only on whether that signal
belongs to a �rst neighbor, or a second neighbor etc. of the given dealer. This is
coming from the symmetry across dealers in circulant networks and the symmetric
informational content of their expectations in this equilibrium.

(b) However, given this symmetric structure of the equilibrium V matrix, there are no
vij and [�0; �1::�mi�1] values which can solve the equations (A.5) unless all vij are
the same. For instance, let us spell this out the implied equation system for the �rst
agent in a (7; 4) circulant network with �k being the second neighbor. If the row of
V corresponding to the expectation of the �rst neighbor of 1 has the structure of
v1 v0 v1 v2 v3 v3 v2 then his second neighbor must have the structure of
v2 v1 v0 v1 v2 v3 v3 : Thus, we need

�0

0BBBBBBBB@

1
0
0
0
0
0
0

1CCCCCCCCA
+ (�1 + �2)

0BBBBBBBB@

v1
v0
v1
v2
v3
v3
v2

1CCCCCCCCA
= (1� �3)

0BBBBBBBB@

v2
v1
v0
v1
v2
v3
v3

1CCCCCCCCA
to hold for some scalars. It is easy to check that this implies that all v � s are
identical. However, it is also easy to check that a V with identical elements cannot
be a �xed point.

This is a contradiction which concludes step 1.
Step 2 : We show that �ziij < 1for any � 2 (0; 1) :
For this, note that by using forward induction on the �xed point equation V = �Y + �ZV; we

obtain that the equilibrium matrix V must satisfy

V = �Y lim
u!1

uX
0

�
�Z
�u
+ lim
u!1

�
�Z
�u+1

V:

As � 2 (0; 1) the diagonal of �Y must be strictly positive, as si must contain residual information
on the private value element of �i relative to the guesses of others. We know from Proposition
1 that V exists. From the fact that all elements of �Z are non-negative and from the fact that
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the Neumann series limu!1
Pu
0

�
�Z
�u converges if and only if limu!1 � �Z�u+1 = 0 (see Meyer

(2000) page 618), we must have that indeed limu!1
�
�Z
�u+1

= 0: As �Z must be symmetric
for a circulant network, and all elements are non-negative, if any elements were larger than 1,
then there were some elements of limu!1

�
�Z
�u+1 which would not diminish (as the elements�

�ziij

�u+1
will be a component in some elements of the the matrix

�
�Z
�u+1 for any i and j).

Step 3 : Now, we search for equilibria such that beliefs are symmetric, that is

ziij = z
j
ji

for any pair ij that has a link in network g.
The system (21) becomes

yi 
1�

P
k2gi

ziik
2�ziik

4�(ziik)
2

! = �yi

ziij

2�zij
4�z2ij 

1�
P
k2gi

ziik
2�ziik

4�(ziik)
2

! = �ziij

for any i 2 f1; 2; :::; ng. Working out the equation for ziij , we obtain

ziij
2 + ziij

= �ziij

0@1�X
k2gi

ziik
2 + ziik

1A
and summing up for all j 2 gi

X
j2gi

ziij
2 + ziij

=
X
j2gi

�ziij

0@1�X
k2gi

ziik
2 + ziik

1A :
Denote

Si �
X
k2gi

ziik
2 + ziik

:

Substituting above and summing again for j 2 gi

Si

0@1 +X
j2gi

�ziij

1A =
X
j2gi

�ziij

or

Si =

P
j2gi

�ziij 
1 +

P
j2gi

�ziij

! :
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We can now obtain

ziij =
2�ziij

�
1� Si

�
1� �ziij (1� Si)

(A.6)

and
yi = �yi

�
1� Si

�
:

Finally, the following logic show that ziij � 2. As �ziij < 1, 2�ziij <
 
1 +

P
j2gi

�ziij

!
implying that

2�ziij
�
1� Si

�
< 1 or 2�ziij

�
1� Si

�
< 2

�
1� �ziij

�
1� Si

��
; which gives the result by A.6.

Case 2: Star networks
We give the closed-form solutions for the star network in Appendix B.2. One can check by

straightforward algebra that the resulting ziij are indeed in the [0; 2] interval.

Proof of Proposition 4

In an equilibrium of the OTC game, prices and quantities satisfy the �rst order conditions (10)
and must be such that all bilateral trades clear.

Since market clearing conditions (6) are linear in prices and signals, we know that each
price (if an equilibrium price vector exists) must be a certain linear combination of signals.
Thus, each price is normally distributed.

From the �rst order conditions we have that

qiij(s
i;pgi) = t

i
ij

�
E(�i

��si;pgi )� pij� :
The bilateral clearing condition between a trader i and trader j that have a link in network g
implies that

tiij
�
E(�i

��si;pgi )� pij�+ tiij �E(�j ��sj ;pgj )� pij�+ �ijpij = 0
and solving for the price pij we have that

pij =
tiijE(�

i
��si;pgi ) + tiijE(�j ��sj ;pgj )

tiij � �ij

Since agent i knows E(�i
��si;pgi ), by de�nition, the vector of prices pgi is informationally

equivalent for her with the vector of posteriors of her neighbors Egi =
�
E(�j

��sj ;pgj )	j2gi .
This implies that

E(�i
��si;pgi ) = E(�i ��si;Egi ):

Note also that as each price is a linear combination of signals and E
�
�j j�
�
is a linear operator on

jointly normal variables, there must be a vector wi that E(�i
��si;pgi ) = E(�i ��si;Egi ) = wis:

That is, the collection of
�
wi
	
i=1;:::n

has to satisfy the system of n equations given by

wis =E(�i
���si;�wjs	j2gi )

for every i: However, the collection
�
wi
	
i=1;:::n

that is a solution of this system, is also an
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equilibrium of the conditional guessing game by construction.

Proof of Proposition 5

Equation (23), the fact that tiij > 0 for all i and j, and E(�i
��si;pgi ) = E(�i

��si;Egi ) = vis
from Proposition 4 implies that we only have to show that all elements of the equilibrium V
matrix de�ned in the proof of Proposition 1 are strictly positive.

We use the notation of Proposition 1. Vi is a convex set and must contain some strictly
positive vectors as the one minimizing g(�), de�ned above,

�
vi
�min � ��1!i, is strictly positive

by assumption. Now we show that there it contains only a single point, the one for vii = !ii
�ii

and vij = 0 for all i 6= j; which is in any of the axes of Rn: This is su¢ cient to prove that vectors
in Vi cannot have negative elements as for a convex set to cross any of the axes, it should have
at least two points on that given axis. We show this by contradiction. Assume that vi 2 Vi
has an other elements on any of the axes, e.g. a �vi such that vi1 = vi2 = ::: = vin�1 = 0 and
vin = x. Then g(�) simpli�es to

g(vi) = x2�nn � 2x!in +
!2ii
�ii
;

The function attains a minimum at x� = !in
�nn

. The minimum value of the function is � !in
�nn

.
Therefore vi is not an element of Vi if

!2in
�nn

<
!2ii
�ii
:

But this always holds in our parameterization (as !2in
�nn

=
(��2�)

2

�2�+�
2
"
and !2ii

�ii
=
(�2�)

2

�2�+�
2
"
).

As we showed in Proposition 1, for any network and any parameters V must be in the
Cartesian product of Vn�n. However, the previous argument shows that there is a single
matrix which has not strictly positive elements, the diagonal matrix with vii = !ii

�ii
for all i:

But it is simple to check that this cannot be a �xed point of our system for any connected
network and any parameters as long as � 6= 0.

Proof of Proposition 6

1. As �! 1, we show that there exists an equilibrium such that

lim
�!1

E
�
�ijsi;pgi

�
= v�

nX
i=1

si; 8i 2 f1; 2; :::; ng

where v� = �2�
n�2�+�

2
"
.

If there exists an equilibrium in the OTC game, then it follows from the proof of Propo-
sition 1 that

E(�i
��si;pgi ) = �yisi +X

k2gi
�ziikE(�

k
���sk;pgk ):
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or
E(�i

��si; egi ) = �yisi +X
k2gi

�ziikE(�
k
���sk;pgk ):

Taking the limit as �! 1, and using Case 2 in the proof of Proposition 1, we have that

lim
�!1

E
�
�ijsi;pgi

�
=

�2�
n�2� + �

2
"

nX
i=1

si:

Given that
lim
�!1

E
�
�ijsi;pgi

�
The conditional variance is

V
�
�ijsi;pgi

�
= �2� � V

�
E
�
�ijsi;pgi

��
and taking the limit �! 1, we obtain

lim
�!1

V
�
�ijsi;pgi

�
= �2� �

�
�2�

n�2� + �
2
"

�2
n
�
�2" + n�

2
�

�
:

and

lim
�!1

V
�
�ijs
�
= �2� � V

�
E
�
�̂js
��

= �2� �
�

�2�
n�2� + �

2
"

�2
n
�
�2" + n�

2
�

�
= �2�

�2"
n�2� + �

2
"

Proof of Proposition 7

Observe that V = (I � Z)�1 Y; for star network has the elements of

v11 = yC
1

1� (n� 1) zCzP
vi1 = yC

zP
1� (n� 1) zCzP

vii = yP
1� (n� 2) zCzP
1� (n� 1) zCzP

v1i = yP
zC

1� (n� 1) zCzP
vij = yP

zCzP
1� (n� 1) zCzP

where yC ; yP are the weights on the private signal and zC ; zP are the weights on the others�
guesses in the central and periphery agents� guessing function respectively. As maximizing
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E
�
�
�
� � ei

�2� is equivalent with maximizing
2tr (V ��s)� tr

�
V �V >

�
where �ii = 1 + �2;�ij = �; [��s]ii = 1; [��s]ij = �; we calculate the expressions for the
components of this objective function.h
V �V >

i
11

=
�
1 + �2

�
v211 +

�
1 + �2

�
(n� 1) v21i + �2 (n� 1) v1iv11 + � (n� 1) (n� 2) v21i

=
((1+�2)y2C+((1+�

2)+�(n�2))(n�1)y2P z2C+�2(n�1)yCyP zC)
(1�(n�1)zCzP )2

andh
V �V >

i
ii
=

�
(n� 2) (n� 3) v2ij + (n� 2) 2 (vi;1 + vi;i) vij + 2vi;1vi;i

�
�+

�
�2 + 1

� �
v2ii + (n� 2) v2ij + v2i;1

�
=

�
yC+zCyP (n�2)

�
1� (n�1)

2
zCzP

��
2zP yP �+(�2+1)((1�(n�2)zCzP )2y2P+(n�2)y2P z2P z2C+y2Cz2P )

(1�(n�1)zCzP )2

and
tr
�
V �V >

�
=
h
V �V >

i
11
+ (n� 1)

h
V �V >

i
ii
:

Also,

tr (V ��s) = v11 + (n� 1) vii + � (n� 1) (v1i + vi1) + � (n� 1) (n� 2) vij =

=
yC + � (n� 1) yP zC
(1� (n� 1) zCzP )

+ (n� 1) yP (1� (n� 2) zCzP (1� �)) + �yCzP
(1� (n� 1) zCzP )

This implies that

lim
�!0

@U (zC + �; zP + �; yC � �; yP � �)
@�

= �f (�zP ; �zC ; �yC ; �yP ;n; �; �)
(�1 + (n� 1)zCzP ) 3

;

where f (�) is a polynomial. Then we substitute in the analytical expressions for the decentral-
ized optimum z�C ; z

�
P ; y

�
C ; y

�
P given in closed form in Appendix B.2 and rewrite lim�!0

@U(z�C+�;z
�
P+�;y

�
C��;y�P��)

@�
as a fraction. Both the numerator and the denominator are polynomials of �2:of order 9:
A careful inspection reveals that each of the coe¢ cients are positive for any � 2 (0; 1) and
n � 3:(Details on the resulting expressions in these calculations are available from the authors
on request.)

Proof of Proposition 8

The �rst part comes by the observation that as zV ! 1 � 1
n�1 ; tV ! 1; while tCN is �nite

for these parameters. The second part comes from taking the limit � ! 1 of the ratio of the
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corresponding closed-form expressions we report in Appendices B.1 and B.3. In particular,

lim
�!1

tCN
tV

=
2n� 3
n� 1 > 1

lim
�!1

��CN
2 E

�
p2ij

�
��V

2 E
�
p2V
� =

�
2n� 3
n� 1

�2
> 1

lim
�!1

n(n�1)
2 E

�
qCN

�
ei � pCN

��
E (qV (ei � pV ))

=
2n� 3
(n� 1)2 < 1

lim
�!1

n(n�1)
2 E

�
qCN

�
ei � pCN

��
� �CN

2 E
�
p2ij

�
E (qV (ei � pV ))� �V

2 E
�
p2V
� =

3� 8n+ 4n2
(3(n� 1)2 > 1:

Proof of Proposition 9

The statements come with simple algebra from the closed-form expressions we report in Ap-
pendix B.2.

Proof of Proposition 10

The �rst part comes by the observation that as zV ! 1 � 1
n�1 ; tV ! 1; while tC and tP are

�nite for these parameters. The second part comes from taking the limit �! 1 of the ratio of
the corresponding closed-form expressions we report in Appendices B.3 and B.2. In particular,

lim
�!1

tV
tC

= (n� 1) zC + zP � zCzP
(2� zP ) ((n� 1) zV � (n� 2))

=1

lim
�!1

tV
tP

= (n� 1) zC + zP � zCzP
(2� zC) ((n� 1) zV � (n� 2))

=
n� 1
n

< 1
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B Appendix: Closed forms in special cases

Throughout, we use the notation � � �2"
�2�
:

B.1 Centralized market

Following Vives (2011), we have

qV = tV
�
ei � pV

�
pV =

tV
(�V + ntV )

X
i

ei;

where tV =
��V

n(zV �1)+2�zV and zV =
2��

(1��)(1+�(n�1))+� implying
@zV
@� ;

@zV
@� > 0 and expectations

are privately fully revealing

ei = E(�ijsi; egi) = E(�ijs) =
1� �

1 + � � �

 
si +

��

(1� �) (1� �+ n�+ �)

nX
i=1

si

!
:

Substituting in these expressions into expressions (27)-(29) gives closed-form solutions for
expected pro�t, expected utility of customers and welfare.

B.2 Star network

Without loss of generality, we characterize a star network with dealer 1 at the centre. There
exist at least one equilibrium of the conditional guessing game such that for dealer 1

�z11i = �zC (B.1)

for any i. Similarly, for any dealer i in the periphery

�zii1 = �zP :

We start with dealer 1, who chooses her demand function conditional on the beliefs of the
other (n � 1) dealers. Given that she knows s1, she can invert the signals of all the other
dealers. Hence, her belief is given by

E(�1js1; eg1) = E(�1js) =
1� �

1 + �2 � �

 
s1 +

��2

(1� �) (1 + �2 � �+ n�)

nX
i=1

si

!
:

Or

E(�1js1; eg1) = v11s1 +
nX
j=2

v1js
j ;
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where

v11 =
1� �

1 + �2 � �

�
1 +

��2

(1� �) (1 + �2 � �+ n�)

�
(B.2)

v1j =
1� �

1 + �2 � �
��2

(1� �) (1 + �2 � �+ n�) (B.3)

for all j 6= 1:
Further, the belief of a periphery dealer i is given by

E(�ijsi; e1) =
�

1
~V
�
�i; e1

� �>� 1 + �2 ~V
�
si; e1

�
~V
�
si; e1

�
V
�
e1
� ��1�

si

e1

�
;

where ~V (�; �) � V(�;�)
�2�

is the scaled covariance operator and

~V
�
e1
�
=
(1� �) (1 + (n� 1) �) + �2

�
1 + (n� 1) �2

�
(1 + �2 � �) (1 + �2 + (n� 1) �)

~V
�
si; e1

�
= �

~V
�
�i; e1

�
= �

(1� �) (1 + (n� 1) �) + �2 (2 + (n� 2) �)
(1 + �2 � �) (1 + �2 + (n� 1) �) :

Since

E(�ijsi; e1) =
~V (e1)� ~V

�
�i; e1

�
�

~V (e1) (1 + �2)� �2
si +

~V
�
�i; e1

� �
1 + �2

�
� �

~V (e1) (1 + �2)� �2
e1

= viis
i + vi1s

i +
nX
j=2
j 6=i

v1js
j

for any i 6= 1, it follows that

vi1 =
~V
�
�i; e1

� �
1 + �2

�
� �

~V (e1) (1 + �2)� �2
v11 (B.4)

vii =
~V
�
e1
�
� ~V

�
�i; e1

�
�

~V (e1) (1 + �2)� �2
+
~V
�
�i; e1

� �
1 + �2

�
� �

~V (e1) (1 + �2)� �2
v1j (B.5)

vij =
~V
�
�i; e1

� �
1 + �2

�
� �

~V (e1) (1 + �2)� �2
v1j (B.6)

and

�yP =
~V
�
e1
�
� ~V

�
�i; e1

�
�

~V (e1) (1 + �2)� �2

�zP =
~V
�
�i; e1

� �
1 + �2

�
� �

~V (e1) (1 + �2)� �2
:
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Moreover, since

e1 = E(�1js1; eg1) = �yCs1 +
nX
j=2

�zCe
j = �yCs

1 +
nX
j=2

�zC
�
�yP s

i + �zP e
1
�
;

then

E(�1js1; eg1) =
�yC

1� (n� 1) �zC �zP
s1 +

nX
j=2

�zC �yP
1� (n� 1) �zC �zP

si:

This implies that
�zC =

v1j
�yP + (n� 1) �zP v1j

and
�yC =

v11�yP
�yP + (n� 1) �zP v1j

:

We now solve the system (21) with substituting the expression for �zC ; �yC ; �zp; �yP above giving
the solution

zP = 2�zP

and

zC = �zC (n+ 2�zP � n�zP � 1) + 1�
q
((�zC (n (1� �zP ) + 2�zP � 1) + 1))2 � 4�zC

and

yC = �yC

�
1� nzC

2� zP
4� zCzP

�
yP = �yP

�
1� zP

2� zC
4� zCzP

�
:

B.3 Complete network

In the complete network, each dealer i chooses her demand function conditional on the beliefs
of the other (n� 1) dealers. Given that she knows si, she can invert the signals of all the other
dealers. Hence, her belief is given by

E(�ijsi; egi) = E(�ijs) =
1� �

1 + � � �

 
si +

��

(1� �) (1� �+ n�+ �)

nX
i=1

si

!
:

Then, following the same procedure as above (for a star), and taking into account that in
a complete network trading strategies are symmetric, we obtain that

E(�ijsi; egi) = �ysi + �z
nX
j=1
j 6=i

ej

where
ej = E(�j jsj ; egj )
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and

�y =
(1� �) (1 + (n� 1) �)

1� �+ � (1� �) (n� 1) + � (1 + (n� 2) �)

�z =
��2"

�2� + �
2
" + �

2�2� � 2��2� � 2��2" � n�2�2� + n��2� + n��2"
:

Solving the system (21), we obtain

yi =
�2� (1� �) (1 + (n� 1) �)�

�2� (1� �) (1 + (n� 1) �) + �2" (1 + 2 (n� 3) �)
�
+ 3��2"

;8i

ziij =
2��2"�

�2� (1� �) (1 + (n� 1) �) + �2" (1 + 2 (n� 3) �)
�
+ 2��2"

;8ij:

Substituting in the expressions for tiij in Proposition (2) we obtain

tiij = ��ij

�
�2� (1� �) (1 + (n� 1) �) + �2" (1 + 2 (n� 3) �)

�
+ 2��2"

2��2"
:
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