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Abstract

We propose a model of trade in over-the-counter (OTC) markets in which each dealer with

private information can engage in bilateral transactions with other dealers, as determined by

her links in a network. Each dealer’s strategy is represented as a quantity-price schedule. We

analyze the effect of trade decentralization and adverse selection on information diffusion,

expected profits, trading costs and welfare. Information diffusion through prices is not

affected by dealers’ strategic trading motives, and there is an informational externality

that constrains the informativeness of prices. Trade decentralization can both increase or

decrease welfare. The main determinant of a dealer’s trading cost is the centrality of her

counterparties. Central dealers tend to learn more, trade more at lower costs and earn

higher expected profit.
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1 Introduction

A vast proportion of financial assets is traded in over-the-counter (OTC) markets. In these

markets, transactions are bilateral, prices are dispersed, trading relationships are persistent,

and typically, a few large dealers intermediate a large share of the trading volume. In this

paper, we explore a novel approach to modeling OTC markets that reflects these features.

In our model, each dealer with private information can engage in several bilateral transacti-

ons with her potential trading partners, as determined by her links in a network. Each dealer’s

strategy is represented as a quantity-price schedule. Our focus is on how decentralization

(characterized by the structure of the dealer network) and adverse selection jointly influence

information diffusion, expected profits, trading costs, and welfare. We prove that information

diffusion through prices is not affected by strategic considerations in a well-defined sense. We

show that each equilibrium price depends on all the information available in the economy,

incorporating even the signals of dealers located far from a given transaction. We identify

an informational externality that constrains the informativeness of prices. We highlight that

decentralization can both increase or decrease welfare and that an important determinant of a

dealer’s trading cost besides her own centrality is the centrality of her counterparties. Using an

example calibrated to securitization markets, we argue that in realistic interdealer networks,

more central dealers learn more, trade more at lower costs, and earn higher expected profit.

However, we also explain why in some special cases, more-connected dealers can earn a lower

expected profit.

In our main specification, there are n risk-neutral dealers organized in a dealer network.

Intuitively, a link between i and j indicates that they are potential counterparties in a trade.

There is a single risky asset in zero net supply. The final value of the asset is uncertain and

interdependent across dealers, with an arbitrary correlation coefficient controlling the relative

importance of the common and private components. Each dealer observes a private signal

about her value, and all dealers have the same quality of information. Since the values are

interdependent, it is valuable to infer each other’s signals. Values and signals are drawn from

a known multivariate normal distribution. Each dealer simultaneously chooses her trading

strategy, understanding her price effect given other dealers’ strategies. For any private signal,

each dealer’s trading strategy is a generalized demand function that specifies the quantity of
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the asset she is willing to trade with each of her counterparties, depending on the vector of

prices in the transactions in which she engages. Each dealer, in addition to trading with other

dealers, trades with price-sensitive customers. In equilibrium, prices and quantities must be

consistent with the set of generalized demand functions and the market clearing conditions

for each link. We refer to this structure as the OTC game. The OTC game is, essentially,

a generalization of the Vives (2011) variant of Kyle (1989) to networks. We consider general

connected networks.

We show that the equilibrium beliefs in the OTC game are independent of dealers’ strategic

considerations. In fact, we construct a separate game, in which dealers do not trade, that

generates the same posterior beliefs. In this simpler, auxiliary game, dealers are connected

in the same network and act in the same informational environment as in the OTC game.

However, the dealers’ aim is to make a best guess of their own value conditional on their

signals and the guesses of the other dealers to which they are connected. We refer to this

structure as the conditional guessing game. Because each dealer’s equilibrium guess depends

on her neighbors’ guesses, and through those, on her neighbors’ neighbors’ guesses, etc., each

equilibrium guess partially incorporates the private information of all the dealers in a connected

network. However, dealers do not internalize how the informativeness of their guess affects

others’ decisions, and the equilibrium is typically not informationally efficient. That is, dealers

tend to put too much weight on their own signal, thereby making their guess inefficiently

informative about the common component.

In the OTC game, we show that each equilibrium price is a weighted sum of the posterior

beliefs of the counterparties that participate in the transaction; hence, it inherits the main

properties of the beliefs. In addition, each dealer’s equilibrium position is proportional to the

difference between her expectation and the price. Therefore, a dealer tends to sell at a price

higher than her belief to relatively optimistic counterparties and buys at a price lower than her

belief from pessimists. This results in dispersed prices and profitable intermediation for dealers

with many counterparties, as is characteristic of real-world OTC markets. The proportionality

coefficient of a dealer’s position is the inverse of her price impact in that transaction. In turn,

the dealer’s price impact is smaller if her counterparty is less concerned about adverse selection,

either because the common value component is less important or because she is more central

and learns from several other prices.
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To gain further insights into our main topics, we proceed in two distinct ways. First, using

a network associated with the securitization market as presented by Hollifield et al. (2016) we

show that more-connected dealers learn more, intermediate more, trade a larger gross volume

with a lower price impact, and make more profit. We also illustrate how our parameters can be

matched to the data and contrast our predictions with the findings from the empirical literature

across various markets.

Second, we gain further insights into welfare, expected profits, and illiquidity by analyzing

trade in various simple networks. In particular, we isolate the effect of decentralization by

comparing the complete OTC network with centralized markets; we illustrate the role of link

density by comparing circulant OTC networks in which we successively increase the number

of links that each dealer has, and we analyze the effect of asymmetric number of links in the

star OTC network. We show that centralized trading might not improve welfare and explain

that for certain parameters, more links imply more profits only when the network exhibits

assortativity.

Finally, we argue that our one-shot game can be interpreted as a reduced form of the

complex dynamic bargaining process that leads to price determination in real-world OTC

markets by constructing an explicit, decentralized protocol for the price-discovery process.

This exercise also highlights the advantages and limitations of our static approach compared

to a full dynamic treatment.

Related literature

Most models of OTC markets are based on search and bargaining (e.g., Duffie et al. (2005);

Duffie et al. (2007); Lagos et al. (2008); Vayanos and Weill (2008); Lagos and Rocheteau

(2009); Afonso and Lagos (2012); and Atkeson et al. (2012)). By construction, in search

models, transactions are between atomistic dealers through non-persistent links. Therefore,

our approach is more suitable for capturing the effects of high market concentration implied

by the presence of few large dealers intermediating the bulk of the trading volume. At the

same time, we collapse trade to a single period, thus missing implications of the dynamic

dimension. In this sense, we view these approaches to be complementary. However, models

of learning through trade based on search require non-standard structures and are difficult to

compare to existing results regarding centralized markets (e.g., Duffie et al. (2009); Golosov
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et al. (2009)).1 Our approach is compatible with the standard, jointly normal framework of

asymmetric information and learning.

There is a growing literature studying trading in a network (e.g., Kranton and Minehart

(2001); Rahi and Zigrand (2006); Gale and Kariv (2007); Gofman (2011); Condorelli and

Galeotti (2012); Choi et al. (2013); Malamud and Rostek (2013); Manea (2013); Nava (2013)).

These papers typically consider either the sequential trade of a single unit of the asset or a

Cournot-type quantity competition.2 In contrast, we allow agents to form (generalized) demand

schedules conditioning the quantities for each of their transactions on the vector equilibrium

prices in these transactions. This emphasizes that the terms of the various transactions of

a dealer are interconnected in an OTC market. Additionally, to our knowledge, none of the

papers within this class addresses the issue of information aggregation which is the focus of

our analysis.3

A separate literature studies Bayesian (Acemoglu et al. (2011)) and non-Bayesian (Bala

and Goyal (1998); DeMarzo et al. (2003); Golub and Jackson (2010)) learning in the context

of arbitrary connected social networks. In these papers, agents update their beliefs about a

payoff-relevant state after observing the actions of their neighbors in the network. Our model

complements these works by considering that (Bayesian) learning occurs through trading.

The paper is organized as follows. The following section introduces the model set-up and the

equilibrium concept. In Section 3, we derive the equilibrium and give sufficient conditions for its

existence. We characterize the informational content of prices and characteristics of information

diffusion in Section 4. In Section 5, we study expected profit, welfare, and illiquidity based

on some of the most common networks and calibrate our model to securitization markets. In

Section 6, we show how our one-shot game can be interpreted as a reduced form of the complex

dynamic bargaining process. Finally, we conclude.

1The main focus of these models is the time-dimension of information diffusion across agents. In these
models, incentives to share information and to learn are driven by the fact that two agents meet repeatedly or
any agent meets with counterparties of their counterparties with zero probability. This is in contrast with our
approach, in which dealers understand that the network structure may lead to overlapping information among
their counterparties.

2As an exception, Malamud and Rostek (2013) also use a multi-unit double-auction set-up to model a decen-
tralized market. However, they do not consider the problem of learning through trade.

3Whereas there is another stream of papers (e.g., Ozsoylev and Walden (2011); Colla and Mele (2010);
Walden (2013)) that consider that traders have access to the information of their neighbors in a network, in
these models, trade takes place in a centralized market.
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2 A General Model of Trading in OTC Markets

2.1 The model set-up

We consider an economy with n risk-neutral dealers that trade bilaterally a divisible risky

asset.4 All trades take place at the same time. Dealers, in addition to trading with each other,

also serve a price sensitive customer-base. Each dealer is uncertain about the value of the asset.

This uncertainty is captured by θi, referred to as dealer i’s value. We consider that values are

interdependent across dealers. In particular, the value of the asset for dealer i can be explained

by a component, θ̂, that is common to all dealers and a component, ηi, that is specific to dealer

i such that

θi = θ̂ + ηi,

with θ̂ ∼ N(0, σ2
θ̂
), ηi ∼ IIDN(0, σ2

η), and V(θ̂, ηi) = 0, where V (·, ·) represents the variance-

covariance operator. This implies that θi is normally distributed with mean 0 and variance

σ2
θ = σ2

θ̂
+ σ2

η. The common value component stands for the uncertain cash-flow from the

asset. The private value component is a short-cut for unmodeled differences in the utility a

dealer derives from this cash-flow, because of differences in background risk, in the usage of

the asset as collateral, in technologies to repackage and resell cash flows or in risk-management

constraints, for example. The degree of the interdependence between dealers’ values is captured

by the correlation coefficient

ρ =
σ2
θ̂

σ2
θ

,

where ρ ∈ [0, 1]. This representation is useful because we can vary the degree of interdepen-

dence, ρ, while keeping the variance σ2
θ constant.

The asset is in zero net supply. This is without loss of generality, provided supply is

constant. We do not assume any constraints on the sizes or signs of dealers’ positions.

We assume that each dealer receives a private signal, si, such that

si = θi + εi,

where εi ∼ IIDN(0, σ2
ε) and V(θj , εi) = 0, for all i and j.

4While our paper focuses exclusively on over-the-counter markets, in online Appendix C we show how our
framework can be generalized to model other partially segmented markets.
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Dealers are organized into a trading network, g. A link ij ∈ g implies that i and j are

potential trading partners, or neighbors in the network g. Intuitively, agent i and j know and

sufficiently trust each other to trade if they find mutually agreeable terms. Let gi denote the

set of i’s neighbors and mi ≡
∣∣gi∣∣ the number of i’s neighbors. If two dealers have a link, let

qiij denote the quantity that dealer i trades over link ij. The price at which trade takes place

is denoted by pij . Links in the network are undirected, such that if ij ∈ g, then ji ∈ g also.

The notation reflects this property. For instance, pij = pji and qiij = qiji.

Whereas our main results hold for any network, throughout the paper, we illustrate the

results using two main types of networks as examples.

Example 1 In an (n,m) circulant network with n odd and m < n even, if dealers are

arranged in a ring then each dealer is connected with m/2 other dealers on her left and m/2 on

her right. The (n, 2) circulant network is the circle, whereas the (n, n− 1) circulant network is

the complete network.

Example 2 In a star network, one dealer is connected with n−1 other dealers, and no other

links exist.

We define a one-shot game in which each dealer chooses an optimal trading strategy, provi-

ded she takes as given others’ strategies but she understands that her trade has a price effect.

In particular, the strategy of dealer i is a map from the signal space to the space of generalized

demand functions. For each dealer i with signal si, a generalized demand function is a conti-

nuous function Qi : Rm
i → Rm

i
that maps the vector of prices5, pgi = (pij)j∈gi , that prevail

in the transactions that dealer i participates in network g into a vector of quantities she wishes

to trade with each of her counterparties. The j-th element of this correspondence, Qiij(s
i; pgi),

represents her demand function when her counterparty is dealer j, such that

Qi(si; pgi) =
(
Qiij(s

i; pgi)
)
j∈gi

.

Note that a dealer can buy a given quantity at a given price from one counterparty and

sell a different quantity at a different price to another at the same time. When dealer i buys

5A vector is always considered to be a column vector unless explicitly stated otherwise.
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on the link ij, the quantity qiij = Qiij(s
i; pgi) is positive. Conversely, when dealer i sells on the

link ij, the quantity qiij is negative.

The demand function of dealer i in a transaction with dealer j, Qiij(s
i; pgi), depends on

all the prices pgi . For example, if k is linked to i who is linked to j, a high demand from

dealer k might raise the bilateral price pki. This might make dealer i revise her estimate of

her value upwards and adjust her quantity supplied to both k and j accordingly. However,

Qiij(s
i; pgi) depends only on pgi , not on the full price vector. This emphasizes a critical feature

of OTC markets, namely, that the price and quantity traded in a bilateral transaction are

known only by the two counterparties involved in the trade and not immediately revealed to

all market participants. Whereas OTC trading protocols do not typically involve the submission

of full demand schedules, we think of generalized demand functions as a reduced-form price

determination mechanism that captures the repeated exchange of limit and market orders (i.e.,

the offer and acceptance of quotes) across fixed counterparties that have persistent links, within

a short time-interval. To illustrate this mapping, we explicitly model the price-discovery process

in Section 6. This also shows why our specification need not rely on the implicit assumption

of a Walrasian auctioneer.

Apart from trading with each other, each dealer also serves a price-sensitive customer base.

Customers have quadratic preferences for holding a quantity q of the asset. We assume that

a dealer i uses each link ij to satisfy an exogenously given fraction of her customer base. In

particular, we consider that dealer i trades with the customers she associates to the link ij at

the same price she trades with dealer j, pij , adjusted by an exogenous markup. This implies

that for each transaction between i and j, the customer base generates a downward-sloping

demand

Dij(pij) = βijpij , (1)

where the constant βij < 0 is a summary statistic for dealer i and j’s customers’ preferences

and the markup that the dealers charge.6 Just as the dealers do, customers in our model

take the network structure as given and do not search across dealers for better prices. This

specification captures in reduced form the fact that clients in OTC markets typically have very

6For example, suppose that the marginal utility of each customer buying quantity q is 1
β
q. If a customer is

associated to a link ij, she will pay pij (1 + µij) per unit where µij is the markup. Then, her inverse demand
function is given by 1

β
q = pij (1 + µij), that is βij = β (1 + µij).
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few and long-lasting dealer relationships. For instance, Hendershott et al. (2016) document

that a large group of clients in the corporate bond market trade with a single dealer annually.

The expected payoff for dealer i corresponding to the strategy profile
{
Qi
(
si; pgi

)}
i∈{1,...,n}

is

E

∑
j∈gi

Qiij(s
i; pgi)

(
θi − pij

)
|si,pgi

 , (2)

where pij are the elements of the bilateral clearing price vector p defined by the smallest element

of the set

P̃
({

Qi
(
si; pgi

)}
i
, s
)
≡
{

p
∣∣∣ Qiij (si; pgi)+Qjij

(
sj ; pgj

)
+ βijpij = 0, ∀ ij ∈ g

}
(3)

by lexicographical ordering7, if P̃ is non-empty. While in equilibrium qiij and qjij tend to have

the opposite sign, qiij 6= −q
j
ij , because the customers also trade a quantity βijpij . If P̃ is empty,

we choose p to be the infinity vector and say that the market breaks down and define all

dealers’ payoff to be zero. We refer to the collection of rules that define a unique vector p

for any given realization of signals and strategy profile as P
({

Qi
(
si; pgi

)}
i
, s
)
. Introducing

the set (3) ensures that we can evaluate dealers’ payoffs for any demand functions that dealers

may choose. This will allow us to search for a Bayesian Nash equilibrium, as explained in the

following section.

2.2 Equilibrium concept

The environment described above represents a Bayesian game, henceforth referred to as the

OTC game. The risk-neutrality of dealers and the normal information structure allows us to

search for a linear equilibrium of this game, which is defined as follows.

Definition 1 A Linear Bayesian Nash equilibrium of the OTC game is a vector of linear

generalized demand functions
{
Q1(s1; pg1),Q2(s2; pg2), ...,Qn(sn; pgn)

}
such that Qi(si; pgi)

7The specific algorithm we choose to select a unique price vector is immaterial. To ensure that our game is
well defined, we need to specify dealers’ payoffs as a function of strategy profiles both on and off the equilibrium
path.
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solves the problem

max
(Qiij)j∈gi

E


∑
j∈gi

Qiij(s
i; pgi)

(
θi − pij

) ∣∣si,pgi
 , (4)

for each dealer i, where p = P (·, s).

A dealer i chooses a demand function, Qiij (·), for each transaction ij, to maximize her

expected profits, given her information, si, and given the demand functions chosen by the

other dealers. Implicit in the definition of the equilibrium is that each dealer understands that

she has a price impact when trading with the counterparties given by the network g. Solving

problem (4) is equivalent to finding a fixed point in demand functions.

3 The Equilibrium

In this section, we derive the equilibrium in the OTC game. First, we derive the equilibrium

strategies as a function of posterior beliefs. Second, we construct posterior beliefs. Third,

we provide sufficient conditions for the existence of the equilibrium in the OTC game for any

network.

3.1 Derivation of demand functions

Our derivation follows Kyle (1989) and Vives (2011). We conjecture an equilibrium in linear

demand functions, such that the demand function of any given dealer i in the transaction with

a counterparty j is

Qiij(s
i; pgi) = tiij(y

i
ijs

i +
∑
k∈gi

ziij,ikpik − pij). (5)

We refer to tiij as the trading intensity of dealer i on the link ij, whereas yiij and ziij,ik capture

the effects specific to the dealer’s private signal and the price pik on the quantity that dealer

i demands on the link ij. As will become clear below, dealer i’s best response is (5) when all

other agents’ demand functions are given by (5).

As is standard in similar models, we simplify the optimization problem (4), which is defined

over a function space, to finding the functions Qiij(s
i; pgi) point-by-point. For this, we fix a

realization of the vector of signals, s. Then, we solve for the optimal quantity qiij that each
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dealer i demands when trading with a counterparty j as she takes the demand functions of the

other dealers as given. Thus, we obtain dealer’s i best response quantity qiij in the transaction

with dealer j for each realization of the signals. This essentially gives us a map from prices to

quantities, or her demand function. We describe the procedure in detail below.

Given the conjecture (5) and market clearing

Qiij(s
i; pgi) +Qjij(s

j ; pgj ) + βijpij = 0, (6)

the residual inverse demand function of dealer i in a transaction with dealer j is

pij = −
tjij(y

j
ijs

j +
∑

k∈gj ,k 6=i z
j
ij,jkpjk) + qiij

βij + tjij

(
zjij,ij − 1

) . (7)

Denote

Ijij ≡ −
tjij(y

j
ijs

j +
∑

k∈gj ,k 6=i z
j
ij,jkpjk)

βij + tiij

(
zjij,ij − 1

) (8)

and rewrite (7) as

pij = Ijij −
1

βij + tjij

(
zjij,ij − 1

)qiij . (9)

The uncertainty that dealer i faces about the signals of others is reflected in the random

intercept of the residual inverse demand, Ijij , whereas her capacity to affect the price is reflected

in the slope −1/
(
βij + tjij

(
zjij,ij − 1

))
. Thus, the price pij is informationally equivalent to

the intercept Ijij . This implies that finding the vector of quantities qi = Qi(si; pgi) for one

particular realization of the signals, s, is equivalent to solving

max
(qiij)j∈gi

∑
j∈gi

qiij

E (θi|si,pgi)+
1

βij + tjij

(
zjij,ij − 1

)qiij − Ijij
 .

From the first-order conditions, we derive the quantities qiij for each link of i and for each

realization of s as

2
1

βij + tjij

(
zjij,ij − 1

)qiij = Ijij − E
(
θi|si,pgi

)
.

Then, using (9), we can find the optimal demand function for each dealer i when trading with

11



dealer j:

Qiij(s
i; pgi) = −

(
βij + tjij

(
zjij,ij − 1

)) (
E(θi

∣∣si,pgi )− pij) . (10)

Furthermore, given our conjecture (5), equating coefficients in equation (10) implies that

E(θi
∣∣si,pgi ) = yiijs

i +
∑
k∈gi

ziij,ikpik.

However, the projection theorem implies that the belief of each dealer i can be described as

a unique linear combination of her signal and the prices she observes. Thus, it must be that

yiij = yi and ziij,ik = ziik for all i, j, and k. In other words, the posterior belief of a dealer i is

given by

E
(
θi|si,pgi

)
= yisi + zgipgi , (11)

where zgi =
(
ziij

)
j∈gi

is a row vector of size mi. Then, we obtain that the trading intensity of

dealer i is the inverse of her price impact in the transaction with dealer j, or

tiij = tjij

(
1− zjij

)
− βij . (12)

Substituting (11) back into our conjecture (5), we obtain that the demand of dealer i in a

transaction with dealer j is given by

Qiij(s
i; pgi) = tiij

(
E
(
θi|si,pgi

)
− pij

)
. (13)

That is, the quantity that dealer i trades with j is the perceived gain per unit of the asset,(
E
(
θi|si,pgi

)
− pij

)
, multiplied by the endogenous trading intensity parameter, tiij . Moreover,

by substituting the optimal demand function (13) into the bilateral market clearing condition

(6), we obtain the equilibrium price between any pair of dealers i and j as a linear combination

of the posterior beliefs of i and j:

pij =
tiijE(θi

∣∣si,pgi ) + tjijE(θj
∣∣si,pgj )

tiij + tjij − βij
, (14)

At this point, we depart from the standard derivation. The standard approach is to deter-

mine the coefficients of the demand function (5) using a fixed-point argument. In particular,
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given our conjecture (5), the bilateral clearing conditions represent a system of linear equati-

ons from which prices can be derived as an affine combination of signals. Then, the projection

theorem implies that for each dealer i, the coefficients yi and zgi must satisfy the following

fixed-point condition:

 yi

z>
gi

 = V

θi,
 si

pgi

×
V

 si

pgi

−1

. (15)

Note that if (15) has a solution for each dealer i, equation (10) implies that our conjecture (5)

is verified.

In general networks, this procedure yields a high dimensional problem. First, the system of

bilateral clearing conditions (6) has as many equations as the number of links in the network.

Second, for each dealer, we need to solve a fixed-point problem that is itself a function of her

position in the network.

Our main methodological innovation is that we derive the equilibrium of the OTC game in

two steps. First, we construct the equilibrium posterior beliefs without solving for the demand

curve or the implied quantities and prices. For this, in Section 3.2, we introduce an auxiliary

game called the conditional guessing game.

Second, based on the equilibrium beliefs in the conditional guessing game, we construct the

equilibrium demand functions of the OTC game in Section 3.3. We provide conditions for the

existence of an equilibrium. In Section 4, we also formally state and qualify the one-to-one

mapping of the posterior beliefs in the two games.

3.2 Deriving posterior beliefs: The conditional guessing game

We define the conditional guessing game as follows. Consider a set of n agents that are con-

nected in the same network g as in the corresponding OTC game. The information structure

is also the same as in the OTC game. Before the uncertainty is resolved, each agent i makes

a guess, ei, about her value of the asset, θi. Her guess is the outcome of a function that has

as arguments the guesses of other dealers she is connected to in the network g. In particular,

given her signal, dealer i chooses a guess function, E i
(
si; egi

)
, that maps the vector of guesses

of her neighbors, egi , into a guess ei. When the uncertainty is resolved, agent i receives a payoff
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−
(
θi − ei

)2
, where ei is an element of the guess vector e defined by the smallest element of

the set

Ξ
({
E i
(
si; egi

)}i
, s
)
≡
{
e
∣∣ ei = E i

(
si; egi

)
, ∀ i

}
, (16)

by lexicographical ordering. We assume that if a fixed-point in (16) did not exist, then dealers

would not make any guesses and their payoffs would be set to minus infinity. Essentially, the

set of conditions (16) is the counterpart in the conditional guessing game of the market clearing

conditions in the OTC game.

Definition 2 An equilibrium of the conditional guessing game is given by a strategy profile(
E1, E2, ..., En

)
such that each agent i chooses strategy E i : R × Rm

i → R to maximize her

expected payoff

max
Ei

{
−E

((
θi − E i

(
si; egi

))2 ∣∣si, egi )} ,
where e =Ξ (·, s).

As in the OTC game, we simplify this optimization problem and find the guess functions

E i
(
si; egi

)
point-by-point. That is, for each realization of the signals, s, an agent i chooses a

guess that maximizes her expected profits, given her information, si, and the guess functions

chosen by the other agents. Her optimal guess function is then given by

E i
(
si; egi

)
= E

(
θi|si, egi

)
. (17)

In the next proposition, we state that the guessing game has an equilibrium in any network.

Proposition 1 In the conditional guessing game, for any network g, there exists an equilibrium

in linear guess functions such that

E i
(
si; egi

)
= ȳisi + z̄giegi

for any i, where ȳi is a scalar and z̄gi =
(
z̄iij

)
j∈gi

is a row vector of length mi.

We derive the equilibrium in the conditional guessing game as a fixed-point problem in the

space of n× n matrices. In particular, consider an arbitrary n× n matrix
′

V =

[ ′
vi
]
i=1,..n

and

let the guess of each agent i be

14



′
e
i

=
′

vis, (18)

given a realization of the signals s. It follows that when dealer j takes as given the choices of

her neighbors,
′
egj , her best response guess is

′′

ej = E
(
θj |sj ,

′
egj
)
. (19)

Since each element of
′
egj is a linear function of the signals and the conditional expectation is

a linear operator for jointly normally distributed variables, equation (19) implies that there is

a unique vector
′′

vj , such that
′′

ej =
′′

vjs. (20)

In other words, the conditional expectation operator defines a mapping from the n× n matrix
′

V =

[ ′
vi
]
i=1,..n

to a new matrix of the same size
′′

V =

[ ′′
vi
]
i=1,..n

. An equilibrium of the

conditional guessing game exists if this mapping has a fixed point. Proposition 1 shows the

existence of a fixed point and describes the equilibrium as given by the coefficients of si and

egi in E
(
θi|si, egi

)
at this fixed point.

Next, we use the conditional guessing game to establish conditions for the existence of an

equilibrium in the OTC game, and we show how to solve for the equilibrium coefficients. In

the following section, we also prove that posterior beliefs of the OTC game coincide with the

equilibrium beliefs in the conditional guessing game.

3.3 Solving for equilibrium coefficients and existence

In this subsection, we prove the main results of this section. In particular, we provide sufficient

conditions under which we can construct an equilibrium of the OTC game building on an

equilibrium of the conditional guessing game.

Proposition 2 Let ȳi and z̄gi =
(
z̄iij

)
j∈gi

be the coefficients that support an equilibrium in

the conditional guessing game and let ei = E(θi
∣∣si, egi ) be the corresponding equilibrium ex-

pectation of agent i. Then, there exists a Linear Bayesian Nash equilibrium in the OTC game
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whenever ρ < 1 and the following system has a solution
{
yi, ziij

}
i=1,..n,j∈gi

such that ziij ∈ (0, 2):

yi(
1−

∑
k∈gi

ziik
2−zkki

4−ziikz
k
ki

) = ȳi (21)

ziij

2−ziij
4−ziijz

j
ji(

1−
∑
k∈gi

ziik
2−zkki

4−ziikz
k
ki

) = z̄iij ,∀j ∈ gi.

All ziij are determined by ρ and the ratio σ ≡ σ2
ε

σ2
θ

and independent of βij . The equilibrium

demand functions are given by (5) with

tiij = −βij
2− zjij

ziij + zjji − ziijz
j
ji

. (22)

The equilibrium beliefs are E
(
θi|si,pgi

)
= yisi +

∑
j∈gi

ziijpij , whereas the equilibrium prices and

quantities are

pij =
tiije

i + tjije
j

tiij + tjij − βij
(23)

qiij = tiij
(
ei − pij

)
. (24)

The conceptual advantage of our method of constructing the equilibrium compared with the

standard approach is that our method is based on a simpler fixed-point problem. Indeed, in the

conditional guessing game we solve for a fixed point in beliefs. This simplifies the fixed-point

problem because there are only n guessing functions as opposed to
(
Σim

i
)

demand functions.

Then, the system of equations (21) ensures we can map n expectations, ei, from the conditional

guessing game into M ≥ n prices in the OTC game in a consistent manner.

Note also that Proposition 2 also describes a simple numerical algorithm to find the equi-

librium of the OTC game for any network. In particular, the conditional guessing game gives

parameters ȳi and z̄ij , and conditions (21) imply parameters yi and zij . Making use of (22),

we then obtain the demand functions that imply prices and quantities by (23)-(24).

The next proposition strengthens the existence result for our specific examples.
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Proposition 3

1. In any network in the circulant family, the equilibrium of the OTC game exists.

2. In a star network, the equilibrium of the OTC game exists.

For the star network and the complete network, closed-form solutions are derived in Ap-

pendix B.

We showed in Proposition 2 that an equilibrium exists when the solution, ziij , of the system

(21) is in the interval (0, 2). As Section 5 illustrates, apart from the networks characterized

in Proposition 3, we found that the equilibrium exists for a large range of parameters for

empirically relevant networks. 8

We conclude this section with the observation that customers’ demand plays a limited role

in our analysis. Whereas there is no equilibrium for βij = 0, for any choice of βij < 0, prices,

beliefs and scaled quantities
qiij
βij

are not affected. We summarize this in the following Corollary.

Corollary 1 Prices, beliefs and scaled quantities,
qiij
βij

, are independent of the slope of custo-

mers’ demand, βij. Furthermore, if βij = β̂ · β̂ij, where each β̂ij is an arbitrary negative scalar

and β̂ is a positive constant, then prices, beliefs and scaled quantities remain constant and

well-defined as β̂ → 0. When β̂ = 0, the equilibrium in the OTC game does not exist.

This result follows immediately from (22) and (24). Clearly, beliefs must be independent of

customers’ demand as they can be derived from the conditional guessing game where there are

no customers. Quantities, qiij , are proportional to βij , because trading intensities, tiij , are. This

follows immediately from the fact that βij is a parallel shift in expression (12), which drives

the equilibrium trading intensities.

Intuitively, we need a non-zero βij because 1
βij

serves as a finite upper bound for the price

impact of an additional unit supplied in a transaction between i and j. This is apparent from

(9). To see why this is essential, it is useful to think about equation (26) as a best response

function for trading intensities. If βij were 0, then the counterparties’ best responses would

8There are irregular networks for which the conditions of Proposition 2 are not satisfied for some parameters.
In these cases, there is at least one agent who puts negative weight on at least one of her neighbors’ expectations,
that is, z̄iij < 0 for some i and ij. This is possible because the correlation between θi and ej , conditional on
all the other expectations of i’s neighbors and si might be negative. Whereas this is still a valid equilibrium
of the conditional guessing game, it results in a negative ziij in the OTC game, which violates the second-order
conditions. More details are available on request.
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converge to zero as |(1− zij)| < 1 by the conditions required in Proposition 2. That is, trade

would collapse. This is a well-known property of similar games (e.g., Kyle (1989) for the case

of two agents). Based on Corollary 1, we argue that the exogenous demand from customers

solves this technical problem with minimal impact on the results.

4 Information Diffusion

In this section, we discuss the informational properties of prices in the OTC market. First,

we characterize the role of the market structure in the diffusion of information through prices.

Second, we introduce a measure of informational efficiency and highlight inefficiencies in how

agents learn from prices.

4.1 Prices and Information Diffusion

We study how the market structure affects the diffusion of information through the network

or trades. For this purpose, we analyze two dimensions. First, we are interested in finding out

to what extent the ability of agents to behave strategically and impact prices influences how

much information gets revealed. Second, we investigate how the network structure interacts

with the role of prices as information aggregators.

To evaluate the role of agents’ strategic motives when trading, the conditional guessing

game is a useful benchmark. This is because any considerations related to price manipulation

are not present in the conditional guessing game. We establish the following result.

Proposition 4 In any Linear Bayesian Nash equilibrium of the OTC game the vector with

elements ei defined as

ei = E(θi
∣∣si,pgi )

is an equilibrium expectation vector in the conditional guessing game.

The idea behind this proposition is as follows. We have already shown that in a linear equili-

brium, each bilateral price pij is a linear combination of the posteriors of i and j, E(θi
∣∣si,pgi )

and E(θj
∣∣sj ,pgj ), as described in (14). Therefore, in each transaction, given that a dealer

knows her own belief, the price reveals the belief of her counterparty. Thus, when a dealer

chooses her generalized demand function, she essentially conditions her expectation about the
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asset value on the expectations of the other dealers she is trading with. Consequently, the set

of posteriors implied in the OTC game works also as an equilibrium in the conditional guessing

game.

The equivalence of beliefs on the two games implies that any feature of the beliefs in the

OTC game must be unrelated in any way to price manipulation, market power or other profit-

related motives.

Next, we analyze the role of the network structure in how prices aggregate information. We

obtain the following result for general connected networks.

Proposition 5 Suppose that there exists an equilibrium in the OTC game. Then in any con-

nected network g, each bilateral price is a linear combination of all signals in the economy, with

strictly positive weight on each signal.

This result suggests that a decentralized trading structure can be surprisingly effective in

transmitting information. Indeed, although we consider only a single round of transactions,

each price partially incorporates all the private signals in the economy. A simple way to see

this is to consider the residual demand curve and its intercept, Iiij , defined in (8)-(9). This

intercept is stochastic and informationally equivalent with the price pij . The chain structure

embedded in the definition of Iiij is critical. The price pij gives information on Iji , which gives

some information about the prices at which agent j trades in equilibrium. For example, if

agent j trades with agent k, then pjk affects pij . By the same logic, pjk in turn is affected by

the prices agent k trades at with her counterparties, etc. Therefore, pij aggregates the private

information of signals of every agent, dealer i is indirectly connected to, even if this connection

is through several intermediaries.

Typically, however, dealers in the OTC market do not learn from prices all the relevant

information in the economy. This is because in a network g, a dealer i can use only mi linear

combinations of the vector of signals, s, to infer the informational content of the other (n− 1)

signals. In contrast, as Vives (2011) shows, in a centralized market in which each agent chooses

one demand function and the market clears at a single price, a dealer i learns all the relevant

information in the economy, and her posterior belief is given by E
(
θi|s
)
.

There are two special cases in which the prices are privately fully revealing if agents trade

over the counter. In our context, the equilibrium prices are privately fully revealing if for each
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dealer i, (si,pgi) is a sufficient statistic of the vector of signals s, in the estimation of θi. The

following result describes these cases.

Proposition 6

1. In the complete network, prices are privately fully revealing.

2. In any connected network, g, when an equilibrium in the OTC game exists, prices are

arbitrary close to privately fully revealing as ρ approaches 1. That is,

lim
ρ→1

E
(
θi|si,pgi

)
= E

(
θi|s
)

lim
ρ→1
V
(
θi|si,pgi

)
= V

(
θi|s
)
.

The first case follows immediately. In a complete network, each agent has mi = n − 1

neighbors; thus, she observes n − 1 prices. Given that she know her own signal, she can in

equilibrium invert the prices to obtain the signals of the other dealers.

The second case in Proposition 6 shows that in the common value limit, decentralization

per se does not impose any friction on the information transmission process in any network.

To shed more light on the intuition behind the latter result, we build intuition based on the

learning process in the conditional guessing game and appeal to the equivalence of beliefs with

the OTC game.

Consider the case in which ρ = 1. As we show in the Appendix, this implies a unique

equilibrium in the conditional guessing game where each agent guess is the best guess they

could obtain by observing all the signals:

ei = E
(
θj |s

)
= E

(
θi|s
)

= ej .

The key idea is that at ρ = 1, there is no private value component; hence, each agent wants to

make the best guess about the common value component only. Once i can learn E
(
θi|s
)

from

its neighbor j, i can and will make the same guess. That is, this is a fixed point of the system

(18)-(20) and hence an equilibrium in the conditional guessing game. Because the conditional

guessing game is continuous in ρ, any equilibrium in the conditional guessing game is close to

this one when ρ is close to 1. That is, it is close to be privately fully revealing in the sense of
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the statement. By Proposition 2, the equilibrium in the OTC game for ρ close to 1 inherits

this property.

Note that we use a limit argument because when ρ = 1, an equilibrium in the OTC game

does not exist. The intuition is essentially the Grossman-Stiglitz paradox. If prices reveal the

common value, dealers do not have incentives to put weight on their private signal. However, in

this case, market clearing cannot channel the private information into the prices. In contrast,

we formally define the equilibrium of the conditional guessing game as a fixed point of guesses.

As a consequence, the equilibrium of the conditional guessing game is well defined, even when

ρ = 1.

4.2 Informational Efficiency

In this section, we discuss the informational efficiency of prices. We defer the discussion of

allocative inefficiency to Section 5.1.

As we have seen above, information is generally not fully revealed in the equilibrium of the

OTC trading game, apart from the two cases discussed in Proposition 6. Moreover, no single

price fully reveals all of the information, except in the common value limit. Thus, we propose

a measure of informational efficiency based on dealers’ beliefs, taking into account that their

learning is constrained by the network structure. More precisely, we exploit the equivalence

of beliefs in Proposition 4 and define a measure of constrained informational efficiency as the

negative sum of squared deviations from the true value,

U
({
ȳi, z̄gi

}
i∈{1,...n}

)
≡ −E

[∑
i

(
θi − E i

(
si; egi

))2∣∣∣∣∣ s
]
, (25)

where E i (·) is the guess function of a dealer i in the conditional guessing game. Then, we can

find conditional guessing functions
{
E i
(
si; egi

)}
i=1...n

that maximize our measure of constrai-

ned informational efficiency (25) subject to e = Ξ (·, s) and (16). This is the planner’s solution

in the conditional guessing game. Alternatively, we can also look for marginal deviations in

dealers’ equilibrium strategies in the conditional guessing game (which, by Proposition 2, would

correspond to marginal deviations from equilibrium strategies in the OTC game), which would

improve constrained informational efficiency.

In general, we find that beliefs are not constrained informationally efficient. We illustrate
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the underlying informational externality on the circle and star networks in this section, and

show that this observation is robust to a large set of random networks in Section 5.2.

Since in a circle, all dealers are symmetric, and each can learn only from two prices, this

is the simplest example that can be used to recover the learning externality that leads to

informational inefficiencies. To see the intuition, we use expressions (18)-(20) as an iterated

algorithm of best responses. That is, in the first round, each agent i receives an initial vector

of guesses,
′
egi , from her neighbors. Given this, each agent i chooses her best guess,

′′

ei, as

in (19). The vector of guesses
′′
egi , with elements given by (20), is the starting point for i in

the following round. By definition, if the algorithm converges to a fixed point, then this is an

equilibrium of the conditional guessing game.

We chose an example with eleven dealers to have a sufficient number of iterations. We

illustrate the iteration rounds in Figure 1 from the point of view of dealer 6. We plot the

weights with which signals are incorporated in the guess of dealer 5, 6 and 7, i.e. v5,v6,v7.

In each figure, the dashed lines show the posteriors of dealer 5 and 7 at the beginning of each

round, and the solid line shows the posterior of agent 6 at the end of each round after she

observes her neighbors’ guesses. We start the algorithm by assuming that the posteriors of

dealer 5 and 7 are the posteriors in the common value limit,
σ2
θ

nσ2
θ+σ2

ε
1>s, as illustrated by the

straight dashed lines that overlap in panel A. The best response guess of dealer 6 at the end

of round 1 is shown by the solid line peaking at s6 in Panel A. The reason dealer 6 puts more

weight on her signal, s6, is that it is more informative about her value, θ6, than the rest of the

signals. Clearly, this is not a fixed point because all other agents choose their guesses in the

same way. Thus, in round 2, agent 6 observes posteriors that are represented by the dashed

lines shown in Panel B; these are the mirror images of the round−1 guess of dealer 6. Note

that the posteriors that dealers 5 and 7 hold at the beginning of round 2 are less informative

for dealer 6 than the equal-weighted sum of signals
σ2
θ

nσ2
θ+σ2

ε
1>s. The reason is that, for dealer

6, her signal together with the equal-weighted sum of signals is a sufficient statistic for all the

information in the economy. Thus, whereas in round 1, she learned everything she wanted to

learn, in round 2, she cannot do so. The weight that dealer 5 and 7 place on their own private

signals “jams” the information content of the guesses that dealer 6 observes. Nevertheless, the

round−2 guesses are informative, and dealer 6 updates her posterior by placing a larger weight

on her own signal, as the solid line on Panel B indicates. Since all other agents update their
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posterior in a similar way, the guesses that dealer 6 observes in round 3 are a mirror image of

her own guess, as indicated by the dashed lines in Panel C. The solid line in Panel C represents

dealer 6’s guess in round 4. In Panel D, we depict the guess of dealer 6 in each round until

round 5, where we reach the fixed point.

Figure 1: Best responses in the conditional guessing game in a ring network. Panel A shows
of player 6’s best response weight on each signal when her neighbors’ guess weighs each signal

uniformly at
σ2
θ

nσ2
θ+σ2

ε
1>. Panel B-D shows further iterations of best responses. Panel D also

shows the planner’s solution. The parameters are n = 11, ρ = 0.8, σ2
θ = σ2

ε = 1, βij = −1.

The thick dashed curve in the last panel of Figure 1 shows the optimal weights on each

signal in the belief of dealer 6 in the planner’s solution. As is apparent, the dealer places more

weight on her own signal in equilibrium than what is informationally efficient. The reason is

that each agent’s conditional guess function affects how much her neighbors can learn from her

guess. This, in turn, affects the learning of her neighbors’ neighbors, etc. Although dealers

optimally choose guesses that are tilted towards their own signals, they do not internalize that
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they distort the informational content of these guesses for others.

In the following proposition, we show that this observation is not unique to the example.

Indeed, in any star network, the sum of payoffs would increase if, starting from the decentralized

equilibrium, both central and periphery dealers would put less weight on their respective signal

and more weight on their neighbors’ guesses.

Proposition 7 Let U
({
ȳi, z̄gi

}
i∈{1,...n}

)
be the sum of payoffs in an star network for any given

strategy profile
{
ȳi, z̄gi

}
i∈{1,...n} . Then, if

{
ȳi∗, z̄∗

gi

}
i∈{1,...n}

is the decentralized equilibrium,

then

lim
δ→0

∂U

({
ȳi∗ − δ, z̄∗

gi
+ δ1

}
i∈{1,...n}

)
∂δ

> 0.

That is, starting from the equilibrium solution, marginally decreasing weights on a dealer’s

signal or marginally increasing weights on other dealers’ guesses increase the sum of payoffs.

The intuition that we provide about why dealers overweight their signal in a circle network

is informative as well about why the central dealers overweight their signal in a star network.

The planner would prefer the central dealer to put less weight on her own signal because this

would make her guess more informative on the common value component, that is, more useful

for the periphery agents. In turn, once the guess of the central agent is more informative, the

periphery agents should put more weight on that and less weight on their own signal. This

explains why periphery agents overweight their signal in the decentralized solution.

Note that this informational inefficiency does not arise as a result of imperfect competition

or strategic trading motives that agents have. Indeed, the equivalence between dealers’ beliefs

in the conditional guessing game and in the OTC game implies that this is not the case.

Instead, it is a consequence of the learning externality arising from the interaction between the

interdependent value environment and the network structure.

An interesting question is whether the informational inefficiency can be corrected to some

degree. It is a reasonable conjecture that when signals are costly to acquire, dealers may

put less weight on their signal relative to the information they learn from prices than when

the signals are costless. However, how dealers would best respond to each others’ choices of

information precision, how the properties of the remaining equilibrium would change with the

network structure, and how it would compare to the planner’s solution are non-trivial questions
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which we leave for future research.

5 Simple networks and real-world OTC markets

In this section, we further explore the implications of our model. We proceed in two distinct

ways.

First, we gain further insights into welfare, expected profits, and illiquidity by analyzing

trade in simple networks. In particular, we isolate the effect of decentralization by comparing

the complete OTC network with centralized markets, we illustrate the role of link density by

comparing different circulant networks, and we analyze the effect of asymmetric number of

links in the star OTC network.

Second, using a filtered network associated to the securitization market as presented by

Hollifield et al. (2016), we argue that we should expect more connected dealers to learn more,

intermediate more, trade a larger gross volume with a lower price impact, and make more profit.

We illustrate how our parameters can be matched to the data and contrast our predictions with

findings from the empirical literature across various markets.

5.1 Profit, welfare, and illiquidity

In this section, we start with some general observations about how the OTC market structure

and adverse selection affect dealers expected profit, welfare, and illiquidity. Then, we proceed

to give further insights by analyzing two simple OTC networks: the complete network and the

star network.

To keep the market structures comparable, we assume that dealers have an identically sized

customer pool. To simplify the welfare analysis, we assume that dealers charge zero mark-up.

As before, a dealer i in the OTC market uses each link ij to satisfy an exogenous fraction of her

customer base. This implies that in the centralized market, the absolute slope of the customers

demand is −βV = nB, whereas in any OTC markets with K total links the customers’ demand

in any transaction between dealer i and j is −βij = nB
K , where B > 0 is an exogenous constant.
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5.1.1 General observations

Before the formal analysis, it is instructive to explain the intuition about what might determine

traders’ profit and total welfare in our economy. First of all, recall that each dealer is risk-

neutral and their valuation has a private component. This implies that if all dealers would take

unboundedly large negative or positive positions, that could lead to unboundedly large expected

profit and welfare. As an illustration, consider the following (non-equilibrium) allocation. Let

the posterior expectations ei be determined in the equilibrium of the conditional guessing game

and let prices and traded quantities be fixed at

pij =
ei + ej

2
, qiij = t

(
ei − pij

)
,

where the trading intensity, t, is the same arbitrary positive constant for each agent. It is easy

to check that as each dealer trades in the direction of her posterior, increasing t without bound

would increase expected profit and total welfare without bound.

In equilibrium, dealers do not take infinite positions because they are concerned about

adverse selection. Whereas expressions (23) and (24) for prices and quantities are similar to

the thought experiment above, the trading intensity of each dealer, tiij , is determined as in

equilibrium from the best response function given by expressions (11) and

tiij = tjij

(
1− zjij

)
− βij . (26)

The coefficients of prices in posteriors, zjij , depend on the network structure, and so do the

trading intensities. By solving for the trading intensities while keeping zjij and ziij constant,

we obtain the equilibrium expression (22). Note that this expression implies
∂tiij

∂zjij
< 0. That is,

the trading intensity of dealer i is smaller if her counterparty puts a larger weight on the price

pij when forming her expectation. We should expect zjij to be higher when the price pij is a

more important source of information for j because either i observes more prices, j observes

fewer prices, or the correlation across values is small. Therefore, zjij is a natural measure of

how much dealer j is concerned about adverse selection when trading with dealer i.

From (9) and (26), 1
tiij

is the price impact of a unit of trade of i at link ij. That is, the

more j is concerned about adverse selection, the less liquid the trade is for dealer i. Hence,
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she trades with a lower trading intensity. Averaging 1
tiij

over the links of i provides a natural,

dealer-level illiquidity measure similar to the one used in Li and Schürhoff (2014) and Hollifield

et al. (2016) for instance. We use this measure to compare illiquidity across market structures

from i’s perspective. We use illiquidity, cost of trading, and price impact interchangeably.

We naturally expect the average profit of dealer i

E

∑
ij∈gi

qiij
(
θi − pij

) =
∑
ij∈gi

tiijE
((
ei − pij

)2)
, (27)

to increase with the number of links because this implies both more opportunities to trade

and intermediate, in addition to higher trading intensities. Although the expected profit also

depends on the gains per unit of trade, E
((
ei − pij

)2)
at each link, we find in all our examples

that variation in trading intensities and opportunities for intermediation are the driving forces.

As a fraction of assets are allocated to customers in equilibrium, we also need their expected

utility for a full welfare analysis. Customers’ expected utility at link ij is proportional to the

variance of the price pij since

E


(
−
(
qjij + qiij

))2

2βij
+
(
qiij + qjij

)
pij

 =
βij
2
E
(
p2
ij

)
− βijE

(
p2
ij

)
= −βij

2
E
(
p2
ij

)
, (28)

as follows from market clearing.

The total welfare is then the sum of profits and customers’ utility summed over each link

of the network.

∑
ij∈g

(
−βij

2
E
(
p2
ij

)
+ E

(
qiij
(
θi − pij

))
+ E

(
qjij
(
θj − pij

)))
. (29)

Sometimes, it will be easier to work with the equivalent formula

∑
ij∈g

(
βij
2
E
(
p2
ij

)
+ E

(
θiqiij

)
+ E

(
θjqjij

))
. (30)

where we net out the transfers across agents obtaining the sum of expected value of allocations

for dealers and customers. Provided βij = β for all links, welfare is linear in β.
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Finally, note that from (23), it immediately follows that price dispersion arises naturally in

this model. A dealer with multiple trading partners is trading the same asset at various prices

because she is facing different demand curves along each link. Just as a monopolist does in a

standard price-discrimination setting, this dealer sets a higher price in markets in which the

demand is higher. In fact, from (23), we can foresee that the price dispersion in our framework

must be closely related to the dispersion in posterior beliefs.

5.1.2 The effect of decentralized trading: the centralized and the complete net-

work OTC market

Comparing the equilibrium in a centralized market as described in Vives (2011) with the

equilibrium in the OTC complete network isolates the effect of trade decentralization. In

both cases, each trader can trade with all of the others and from Proposition 6 we have that

the posterior expectations are the same (and efficiently incorporate all the information in the

market). Nevertheless the prices, allocations, and welfare differ.

The main observation in this subsection is that the effect of trade decentralization on welfare

and illiquidity depends on the correlation across dealer’s values. Close to the common value

limit, the OTC market is more liquid and provides higher total welfare than the centralized

market, whereas for lower correlations across values, the opposite is typically true.

In Appendix B.1, we report closed-form solutions for the price, pV , quantity, qV , and the

price coefficient in expectations, zV , for centralized markets (i.e., Vives (2011)). The trading

intensity of a dealer in a centralized market is given by tV = −βV
n(zV −1)+2−zV , which is the fixed

point of expression

ti = (n− 1) t−i
(
1− z−iV

)
− βV . (31)

Equation (31) shows how the trading intensity, ti, of dealer i responds to the trading intensity

of all other agents, t−i, and to their adverse selection concern, z−iV . This is the centralized

counterpart of (26). The expected profit and welfare in a centralized market are calculated by

trivial modifications of (27) and (29).

Importantly, Vives (2011) shows that there is linear equilibrium in centralized markets, if

and only if 1− 1
n−1 < zV . As we argued above, adverse selection concerns determine the slope

of demand curves when dealers are risk-neutral. In a centralized market, this concern must be
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sufficiently strong, or the equilibrium cannot be sustained. The same condition is also required

for an equilibrium to exist in an OTC market. However, with bilateral trades, it reduces to

0 < zjij .

In a complete network, the trading intensity is tjij = tiij = tCN = −βCN 1
zCN

, and a closed-

form for the adverse selection parameter zCN is given in Appendix B.3. Additionally, as we

explained above, we keep the total mass of customers constant across the two market structures,

implying −βCN = 2B
n−1 and −βV = Bn for some B > 0.

Panels A-D in Figure 2 illustrate how dealers’ profit, customers’ utility, illiquidity and total

welfare compare across the two markets for different values of ρ, fixing all other parameters.

In the next proposition, we state our analytical results corresponding to these figures.

Proposition 8 Comparing a centralized market with a complete-network OTC market

1. When ρ or σ2
ε

σ2
θ

is sufficiently low, such that zV converges to 1− 1
1−n from above, the total

welfare and dealers’ profits are larger and illiquidity is smaller in the centralized market.

2. When ρ is sufficiently close to 1, then

(a) total welfare and customers’ utility are higher and illiquidity is lower in the OTC

market, whereas

(b) dealers’ profits are higher in the centralized market.

The intuition is as follows. Note first that as zV → 1 − 1
n−1 from above, trading intensity

grows without bound, tV → ∞, and illiquidity falls to zero. Because the information content

of the price increases with ρ and σ2
ε

σ2
θ

in a centralized market, so does zV . This implies that

for sufficiently low ρ and σ2
ε

σ2
θ
, welfare and dealers’ profit are increasing without bound in a

centralized market. This holds because as adverse selection becomes weaker, dealers are ready

to take on very large bets. Because the private value component implies gains from trade,

these large trades translate into high expected profit and high welfare. Given that quantities

and profits are finite in the OTC market as long as ρ is not close to 0, it immediately follows

that at least when zV is close to 1− 1
n−1 , profit and welfare are larger and illiquidity is lower

in centralized markets.

Perhaps more surprising is that in the common value limit, when ρ is close to 1, total

welfare is higher and illiquidity is lower in the OTC market than in the centralized market.
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Figure 2: Expected profit, expected welfare, expected customer utility, average trading cost
(illiquidity) per trader in various networks. Parameters: n = 9, B = 1, σ2

θ = 0.1, σ2
ε = 1.

We start with the result on illiquidity. There are two forces that drive this result. First,

even if price aggregated the same amount of information under the two market structures,

that is, if zV and zCN were equal, mechanical differences in best responses in (31) and (26)

would lead to a different outcome. Namely, the absolute values of both the slope and and the

intercept of best responses are higher in the centralized market. The slope is higher because

the aggregate response of (n− 1) counterparties is higher than that of a single counterparty,

whereas the intercept is higher because all customers are present in the centralized market:

30



−βV = Bn > 2B
n−1 = −βCN . Whereas the slope and intercept have opposite effects, simple

algebra shows that the sum of these forces would result in higher illiquidity in the OTC market

as
1
tV
1

tCN

|zv=zCN=z < 1.

Second, however, the single price in the centralized market aggregates more information

than each of the individual prices separately in the OTC market. Indeed, it is easy to check

that zCN < zV for any parameter values. This tends to make illiquidity higher in the OTC

market. Note that increasing the ratio zV
zCN

increases illiquidity in the centralized market

relative to the OTC market as

∂
1
tV
1

tCN

| zV
zCN

=x

∂x
=

∂
− 2B
n−1

1
z

−nB
n(xz−1)+2−zx

∂x
> 0.

Because zV
zCN

is monotonically increasing in ρ, this force is strongest at the common value limit.

As we prove in the proposition, this effect is sufficient to make illiquidity higher for in OTC

market in the common value limit.

To understand the result on welfare, we start by comparing customers utility. Note first

that the ratio of customers’ utility in the complete network OTC market and the centralized

market is the ratio of the price variance in each market:
B
n−1

n(n−1)
2

E(p2CN)
nB
2
E(p2V )

=
E(p2CN)
E(p2V )

. Also, in

the common value limit, the price variance is larger under the OTC structure as

lim
ρ→1

E
(
p2
CN

)
E
(
p2
V

) = lim
ρ→1

(
1

2+zCN

)2
4
(
V
(
ei
)

+ V
(
ei, ej

))
(

1
2+(n−1)zV

)2
2n (V (ei) + (n− 1)V (ei, ej))

=

(
2n− 3

n− 1

)2

> 1.

As is apparent from the second expression above, there are two forces. On the one hand, in

a centralized market the variance of the price is connected to the variance of the sum of all

expectations, whereas in an OTC market, it is connected to the variance of the sum of the

two expectations at each link. The first one is higher, which makes customers’ expected utility

higher on centralized markets. On the other hand, as zV > zCN , the multiplier coming from

trading intensities tends to push customers’ utility higher in the OTC market. The ratio zV
zCN

is maximal in the common value limit, and the second force turns out to dominate the first.

So in this limit, the utility is higher under the OTC structure. As Panels A-D in Figure 2

demonstrate, when ρ is smaller, the first force might dominate, thus implying that utility tends
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to be larger under the centralized structure.

Finally, we explain why welfare is higher but the expected profit of dealers is lower in the

OTC market in the common value limit. For this, we substitute in the closed-form expressions

to (30), the sum of the value of allocations to dealers and customers. Taking the limit, it is easy

to show that the sum of terms corresponding to dealers is actually greater in the OTC market

than in the centralized market in the common value limit ρ → 1. This is due to the larger

trading intensity in OTC markets in this limit. The difference between formulas (29) and (30)

represents, essentially, a transfer from dealers to customers. Since this transfer is larger under

the OTC market structure, this explains why welfare and profit move in opposite directions. As

is apparent from the middle expression in (28), the total transfer is
∑

ij

(
−βijE

(
p2
ij

))
, twice

the utility of customers, which, as we argued above, is indeed higher in the OTC complete

network than in the centralized market in the common value limit.

5.1.3 The effect of more links: circulant networks with varying density

Panels A-D in Figure 2 also illustrate how welfare, customers’ utility, dealers’ profit and illi-

quidity compares in various (n, k)-circulants. With fewer links, welfare and customers’ utility

tends to decrease and illiquidity tends to increase, whereas dealers’ profit might go either way.

As there are no explicit solutions for the conditional guessing game for circulant networks,

we do not have analytical results for the circulant OTC networks either. Nonetheless, because

of the symmetry, the intuition behind the numerical results is relatively simple. Decreasing the

number of links in symmetric fashion has two main effects: each dealer learns less and each

dealer has fewer opportunities to trade and intermediate. Learning less implies more concern

about adverse selection, lower trading intensities on average, higher illiquidity and smaller

variance of prices at each link (as fewer links implies lower variation in expectations as weights

on the common prior increase and weights on signals decrease). Fewer opportunities to trade

and smaller trading intensities imply a smaller trading volume which is the dominating force in

reduced welfare. The lower price variance implies a reduced customers’ utility and, by the logic

explained above, a smaller total transfer from dealers to customers. Profits can go either way

because the net effect of less trade and smaller transfers is ambiguous. As we see in the figure,

close to the common value limit, less dense networks might be more profitable for dealers.
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5.1.4 The effect of asymmetry: periphery and the central dealer in a star network

The star network is an ideal case to study the effect of asymmetry on allocations and welfare.

The main result in this subsection is that central agents do not always earn higher expected

profit than periphery agents. In fact, expected profit is higher for periphery agents in the

common value limit.

Simple, closed-form solutions that characterize the equilibrium in a star network are spelled

out in Appendix B. The next proposition and Panels E-F in Figure 2 show analytical and

numerical results, respectively, concerning illiquidity, profit, and welfare.

Proposition 9 In a star network, the following statements hold

1. The adverse selection concern and the trading intensity of periphery traders are higher,

zP > zC , tP > tC , or, equivalently, the central dealer faces a more illiquid market than

the periphery dealers for any ρ.

2. In the common value limit, ρ → 1, central dealer’s profit converge to zero while the

periphery dealer”s profit is bounded away from zero as tP → −β, tC → 0.

We start by comparing the trading intensities, tP and tC . As we noted before, for the

central agent prices are privately fully revealing. That is, her posterior belief is the same as the

belief of dealers in a complete network or in a centralized market. In contrast, the learning of

periphery dealers is limited by the fact that they observe a single price only. As a result, the

weight that a periphery dealer puts on the price is larger than the weight the central dealer

puts on the same price, so zP > zC always holds. Intuitively, the periphery dealer is more

concerned about adverse selection than the central dealer, as the central dealer knows more.

Therefore, from (22), the trading intensity of periphery traders is always larger, as

tP
tC

=
2− zC
2− zP

> 1.

Hence, at each link the central dealer trades with a smaller intensity, or equivalently, the market

is less liquid for the central dealer than for the periphery dealer.

The lesson from the above intuition is that a dealer trading with less-connected counter-

parties should face a higher price impact. In the special case of a star, the dealer with the
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least-connected counterparties is the central dealer. Thus, in the star, there is a positive cor-

relation between price impact and number of own links. However, this is an artifact of the

special structure of the star. In more general core-periphery networks the average number

of links of more-connected dealers’ counterparties is often greater. Indeed, in our calibrated

example in Section 5.2, there is a negative relationship both between price impact and number

of counterparty’s links (just as in the star) and between price impact and number of own links

(unlike in a star).

Now, we turn to profits and allocations in the star network. Although the central dealer

trades with less intensity, she also trades and intermediates across more links, and by (23),

the distance between her expectation and the price is higher than for the periphery dealer. As

illustrated in Panels E-F in Figure 2, for a large set of parameter values, the effect of the smaller

trading intensity is dominated, and trading as a central agent is more profitable in expectation

than as a periphery agent. However, this is not always the case. As is apparent in the figure,

this statement is reversed as we approach the common value limit. In fact, in the limit the

expected profit of the central dealer is zero, whereas it is strictly positive for periphery dealers,

as we state in Proposition 9. Again, this is related to the strong negative assortativity in a

star.

To see the intuition, it is illustrative to specify how profits are determined close to the

common value limit. In the limit, all dealers put diminishing weight on their own signal as

they form expectations. Instead, in the conditional guessing game as ρ→ 1, periphery dealers

put a weight of z̄P → 1 on the expectation of the central dealer, while the central dealer puts

equal weight on each of the periphery agents’ expectations, implying z̄C → 1
n−1 . Thus, by

Proposition 9, as we approach the common value limit in the OTC game, this implies trading

intensities of tP → −β, tC → 0. That is, central dealers do not trade in this limit at all, and

periphery dealers trade only with customers. In the common value limit, the central agent has

better information about the common value of the asset than periphery agents. Thus, as a

manifestation of the no-trade theorem, there cannot be an equilibrium where these agents trade

with each other. Therefore, the only remaining question is who trades with the customers. As

periphery agents are more concerned about adverse selection, the price impact of the central

dealer is larger. This implies that there is a price-quantity pair at which the central dealer

stops trading, but at which the periphery dealer is still willing to trade. This results in positive
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trade between periphery and customers only.

5.2 Real-world OTC markets: a calibrated example

An attractive feature of our model is that it generates a rich set of empirical predictions. As

we emphasize in this section, for any given information structure and dealer network, our

model generates the full list of demand curves and the joint distribution of bilateral prices and

quantities, which we can use to calculate the expectations of price dispersion, intermediation,

trading volume and other financial variables. Therefore, in principle, our results could be

compared to stylized facts from the growing empirical literature using transaction-level OTC

data.

In this subsection, we give guidelines for future empirical work by an illustrative exam-

ple. Namely, we fit our parameters to the securitization market, i.e., the secondary market

of ABSs, CDOs, CMBs and non-agency CMOs, as presented by Hollifield et al. (2016). In

particular, conditioning on the reported dealer network, we explore the sensitivity of various

variables of interest to the parameters of our model, we find the parameters that match few

selected moments reported by Hollifield et al. (2016), and we analyze the model with the fitted

parameters.

5.2.1 The dealer network and sensitivity of moments

Hollifield et al. (2016) analyze the effect of the interdealer network on bid-ask spreads in

various segments of the securitization market using a transaction level data set from FINRA

during eight months in 2011-2012. Conveniently, in the working paper version, Hollifield et al.

(2013) report the filtered, 78-dealer representation of the trading network where only links with

sufficient frequency and size of transactions are reported. We reproduce this network on Figure

3. Using this network, we calculate the equilibrium of our model as described by Propositions

1and 2.

To give a sense of which empirical moments one can choose to fit our model to the data,

on Figure 4 we plot a number of objects for a range of parameters. In particular, we show the

mean price impact, the ratio of expected profit per dealer and expected net positions per dealer,

absolute and relative price dispersion, expected total gross volume, and mean expected profit
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Figure 3: The inter-dealer trading network on the securitization market reproduced from Hol-
lifield et al. (2013, Figure 5). Links are defined by trading relationships with at least 50 trade
reports and at least $10 million of original balance transacted in the sample from May 16, 2011
to February 29, 2012. Dealers are ordered and numbered by their eigenvalue centrality. (The
five links unconnected to the main network are omitted).

per dealer as a function of σ ≡ σ2
ε

σ2
θ

and ρ, keeping σ2
θ = −β = 1 fixed. Formal definitions of the

variables are provided in Table 1. Note that we do not have to simulate the random variables

θi and εi. For any network, given the equilibrium coefficients, ziij , defined in Proposition 2,

we can analytically calculate these objects. There is also no need to check the sensitivity to

β and σ2
θ because the relative price dispersion and mean profit over the net position depend

only on σ ≡ σ2
ε

σ2
θ

and ρ, mean price impact linearly scales with (−β), absolute price dispersion

linearly scales with σθ, gross volume linearly scales with σθ(−β) and expected profit linearly

scales with σ2
θ (−β) by Corollary 1 and Proposition 2. To make the sensitivities comparable,

we scale and normalize all the quantities to be proportional to their calibrated value calculated

in the next section. Note that the smallest ρ, σ combination which is plotted in each surface

corresponds to the calibrated value of ρ, σ; therefore, each surface takes the value of 0 at that

point.
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moments formula

mean price impact 1
mΣi

1
|gi|Σj∈gi

1
tiij

ratio of expected profit to expected net positions per dealer
E
(

1
n

Σi
∑
ij∈gi q

i
ij(θi−pij)

)
E
(

1
n

Σi|
∑
ij∈gi q

i
ij |
)

absolute price dispersion

√
E
(

1
mΣij (pij − p̄)2

)
relative price dispersion

√
E( 1

m
Σij(pij−p̄)2)
E(|p̄|)

expected total gross volume E
(

ΣiΣj∈gi |qiij |
)

mean expected profit per dealer E
(

1
nΣi

∑
ij∈gi q

i
ij

(
θi − pij

))
Table 1: Moments and definitions.

5.2.2 Matching parameters

Ideally, we would estimate our parameters and test the fit by GMM in an over-identified system

of a large number of moments including the ones in Figure 4. However, because we do not have

access to the data set, we limit ourselves to the following exercise. We use three moments that

are reported in Hollifield et al. (2016) that have a natural counterpart in our model and respond

differently to our parameters: the average customer bid-ask spread, relative price dispersion,

and total volume.9 As we show in this subsection, these three moments exactly identify the

three free parameters of the model, σ ≡ σ2
ε

σ2
θ
, (−β)σ2

θ and ρ. Then, using the fitted parameter

values we calculate various indicators to assess the strength and weaknesses of our framework.

We provide more details of this exercise in Appendix C.

Hollifield et al. (2016) constructs customer bid-ask spreads as follows. They identify trades

when a customer sells a given quantity to a dealer, which the dealer (potentially through other

dealers) passed on to another customer. The bid-ask spread is the difference between the two

transaction prices with the customers as a percentage of the value of the transaction. A single

dealer involved in 83% of these chains.

The variable that corresponds in our model to the customer bid-ask spread is price impact.

Indeed, from (13), the theoretical price difference for customers associated to a link ij of selling

and buying ∆ units from dealer j, pij (−∆)−pij (∆) , as a percentage of the marginal valuation

9For simplicity, we focus on one of the two main explored segments: the ”Rule 144a” securities. We choose
this segment because the average trade size is larger; therefore, we expect that the filtering of our base network
is less limiting.
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Figure 4: Moments as a function of correlation across values, ρ, and noise-to-signal ratio,

σ ≡ σ2
ε

σ2
θ
. From left to right and from top to bottom, we show the mean price impact, the

ratio of expected profit per dealer to the expected net positions per dealer, the absolute and
relative price dispersion, the expected total gross volume and the mean expected profit per
dealer, keeping σ2

θ = (−β) = 1 fixed. Each plot is scaled and normalized to show deviations
proportional to implied values at calibrated parameters. The minimal ρ = 0.014, σ = 0.1584
combination in each plot is the pair of calibrated parameters.

of that customer is

pij (−∆)− pij (∆)
1
β∆

=

(
ei − −∆

tiij

)
−
(
ei − ∆

tiij

)
1
β

=
2β

tiij
. (32)
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By (22), for any given dealer and link, this is a constant pinned down by σ ≡ σ2
ε

σ2
θ

and ρ only.

Therefore, we match the average value of (32) implied by our model to the average customer

bid-ask spread in Hollifield et al. (2016, Table 3).

Hollifield et al. (2016, Table 10) report the relative dispersion of customer bid-ask spread

separately for the top 5% of the highest eigenvalue centrality dealers (core) and for the rest

of the dealers (periphery). Because we expect that our filtered network contains all the core

dealers, we choose the relative dispersion measure corresponding to core dealers as our second

moment. We match this with the model implied ratio of expected price dispersion to the

absolute mean of prices in those transactions where one of the counterparties is a core dealer.

We match the total volume in identified customer to customer chains in the sample with

the expected total volume in our model as reported in Hollifield et al. (2016, Table 2).

This procedure gives the parameter values of ρ = 0.014, σ = 0.1584, (−β)σ2
θ = 7.3835.

With the estimated parameter values we verify that our model implies that the average spread

for core dealers is less than for periphery dealers and the average spread for large trades is

smaller than that for small trades. These results are qualitativly consistent with Hollifield

et al. (2016, Table 3, Table 10). Figure 4 gives a good idea of how the moments identify the

parameters. Relative price dispersion essentially pins down ρ as the corresponding surface is

very sensitive to ρ but almost flat in σ ≡ σ2
ε

σ2
θ
. This is intuitive as a principal source of price

dispersion in our model is the private component in dealers’ values. Given ρ, the average price

impact pins down σ ≡ σ2
ε

σ2
θ
. Given these two parameters, the total volume pins down (−β)σ2

θ

because it scales linearly in that variable.

5.2.3 Stylized facts and other OTC markets

In this section, we further explore the qualitative implications of our model and constrast them

with empirical facts from other OTC markets. For this exercise, we use the same network

described above and the parameters we have calibrated.

We start by illustrating how dealer’s centrality is related to a set of standard financial indi-

cators using our calibrated parameters. Panels A-D show dealer level measures. In particular,

we plot each dealer’s expected profit, expected gross volume, intermediation, calculated as the

expected gross volume over expected net volume and posterior precision (as percentage of the

corresponding precision under fully revealing prices), against the number of trading partners of
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the given dealer. Panels E-F show link level measures. In particular, we plot the price impact

a dealer faces on a given link against the number of trading partners, and against the sum of

the trading partners of the two counterparties connected by the link, respectively.

The relationship between the degree of the dealer and her profit, gross volume, gross-to-

net volume ratio or precision is strong and positive. The shape of the scatter plots suggests

that, given the calibrated parameters, the dealer’s degree centrality summarizes almost all

the relevant information of her network position to determine her profit, volume, information

precision and gross-to-net volume ratio. While there is only a weak negative relationship

between the degree of the dealer and her price impact, there is a strong relationship between

the sum of the degrees of both counterparties and price impact. This is consistent with our

discussion in Section 5. The price impact a dealer faces is smaller when her counterparty

puts less weight on the given price, for example, because she trades with a large number of

counterparties. Therefore, we should observe the smallest price impact when both parties have

a large number of trading partners.10

These observations are qualitatively consistent with the empirical literature considering

various markets. Similarly to Hollifield et al. (2016), Di Maggio et al. (2017) find in the context

of the corporate bond market that central dealers offer lower spreads compared to periphery

dealers. Consistently with our analysis, they also find that the centrality of both counterparties

matter for price impact of the trade. They find that the price impact is lowest between two

high-centrality dealers, highest between two low-centrality dealers, and in-between when only

one of the counterparty has high centrality. This is as predicted by Panel F on Figure 5.11

Li and Schürhoff (2014) also show that central agents in the municipal bond market trade

more, their trades are more profitable, and they seem to be better informed than others. The

positive relationship between centrality and trading volume is also confirmed by Roukny et al.

(2014) for a data-set of European CDSs.

Our model can also be used as a basis for counter-factual analysis. As an illustration, in

10As parameters vary, especially as the correlation parameter gets larger, while these relationships are always
strong and have the same sign, degree centrality does not suppress all the other network characteristics to the
same extant. We illustrates this observation in Appendix C.

11Interestingly, in contrast to Hollifield et al. (2016) and Di Maggio et al. (2017), Li and Schürhoff (2014) finds
that central traders offer higher spreads than periphery traders in the context of the municipal bond market.
Hollifield et al. (2016) suggests that the difference might be due to the different level of sophistication in these
markets. Our model suggests that in the municipal bond market adverse selection might not be the first order
determinant of variation in spreads.
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10-3 E: Average price impact
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10-3 F: Price impact at each link

Figure 5: Panels A-D show each dealer’s expected profit, gross volume, intermediation, and
posterior information precision (as percentage of precision under fully revealing prices) against
the number of the dealer’s trading partners. Panels E and F show the price impact a dealer
faces at a given link against the number of her trading partners, and against the sum of the
trading partners of the two counterparties at the given link, respectively. Parameter values are
ρ = 0.014, σ = 0.1584, β = −1, σ2

θ = 7.3835

Appendix C, we analyze the effect of market distress in our calibrated example. In particular,

we remove the most connected dealer from the network. We find that network-wide price

dispersion and average price impact goes up, while overall trading volume goes down. These

observations are consistent with findings in the empirical literature that study the the effect

of a stress event on market indicators, such as Friewald et al. (2012) for the corporate bond

market, Afonso and Lagos (2012) for the Fed Funds market, and Agarwal et al. (2012) for the

MBS market.

Importantly, thinking about the underlying trading network structure might be useful even

when the econometrician has only limited information about dealers’ characteristics. Indeed,
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given our results, we should expect that larger transaction size is associated with lower trading

costs, higher profits, profitable and more informative trades. The reason is that these are

properties of transactions of more connected dealers. From this set of predictions, the pattern

that percentage cost is decreasing in the size of the transaction is a robust observation in many

different contexts (see Green et al. (2007) and Li and Schürhoff (2014) on municipal bonds and

Edwards et al. (2007) and Randall (2015) on US corporate bonds).

Finally, consistent with our observations Atkeson et al. (2012), Li and Schürhoff (2014)

and Hollifield et al. (2016) all report the CDS and the securitized loan markets are highly

concentrated. While the same is true when US corporate bonds are evaluated in the aggregate,

Schultz (2001) reports that trading in specific bonds seems to be spread across multiple dealers.

Our model is silent on these differences.

6 The Price-Discovery Game

In this section, we guide the reader to better connect our OTC game to the real world features

of trading in OTC markets. In the OTC game dealers’ trading strategies are represented by

generalized demand curves, and all trades take place simultaneously. This is a very tractable

and rich theoretical structure, and we consider the one-shot OTC game as a reduced-form

representation of how equilibrium prices and quantities are determined in reality.

In real world OTC markets, dealers do not post full demand curves. Instead, dealers engage

in bilateral negotiations with their counterparties by quoting prices which are valid for a certain

quantity. To capture this feature, we introduce a variant of the OTC game where dealers find

the equilibrium prices and quantities through a sequence of bilateral exchange of quotes.

In particular, consider that each node in a given network is a trading desk. Each desk i

consists of a desk-head, whom we continue to refer as dealer i, and one or more traders. Dealer

i designs a bidding strategy and the traders have to implement this strategy. The bidding

strategy describes how the traders should respond to bids they receive from counterparties.

Bidding takes place sequentially, in rounds. In each bidding round τ , each trading desk i

makes an offer πiij,τ =
{
piij,τ , q

i
ij,τ

}
to each trading desk j with whom she has a link, indicating

that she is willing to trade quantity qiij,τ for price piij,τ . Thus, in any bidding round all dealers

make and receive offers to and from their counterparties in the network. If the price offered
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by i to j is arbitrarily close to the price offered by j to i, and the two quantities differ only to

the extent of the order of the customers’ demand at the given price, then the offer is accepted.

Otherwise, a trading desk j that receives the bid in round τ , responds with a counter-offer

πjij,τ+1 =
{
pjij,τ+1, q

j
ij,τ+1

}
in round τ +1. This process can continue for any number of rounds,

until all trading desks accept the offers. At that point, trades are executed both across dealers

and with customers. We define this game formally in the appendix and call it a price-discovery

game.

The following proposition proves our claim that dealers can find the equilibrium prices and

quantities in the OTC game by playing the price-discovery game.

Proposition 10 Suppose that there exists an equilibrium in the OTC game, with ȳi ≥ 0 and

z̄iij ≥ 0 whenever j ∈ gi.

1. There exists a set of bidding strategies that are an equilibrium in the price-discovery game.

2. The resulting prices and quantities are the same as the equilibrium prices and quantities

in the OTC game.

Although the construction of the price-discovery game is arguably artificial, it illustrates

some important features of our OTC game. On the one hand, finding the equilibrium prices

and quantities in the OTC game needs not rely on any kind of auctioneer. The price-discovery

game shows that equilibrium prices and quantities can be found via an iterative, decentralized

process. Moreover, the coefficients of the generalized demand curves (and, consequently the

coefficients of the bidding strategies) can be derived without observing the realization of signals.

Indeed, dealers can find the equilibrium coefficients just by understanding the structure of the

game they are facing.

On the other hand, the price discovery game emphasizes an important limitation of the

OTC game. Namely, the equivalence between the price discovery game and the OTC game

relies on the fact that the bidding strategies are static. That is, they do not depend on the

bidding round, and they are conditional only on the outcome of the last bidding round, as

opposed to all previous rounds. This restriction on the strategy space of dealers that dealers

can use is necessary as the OTC game is nevertheless a static game. Thus, in our framework,
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we are unable to capture any dynamic learning considerations inherent in real-world OTC

markets.

7 Conclusions

In this paper, we proposed a model of trading and information diffusion in OTC markets.

Dealers trade on a fixed network, and each dealer’s strategy is represented as a quantity-

price schedule. We showed that information diffusion through prices is unaffected by dealers’

strategic trading motives and that each price partially incorporate the private information of

all dealers, and we identified an informational externality that constrains the informativeness

of prices. We also highlighted that trade decentralization can both increase or decrease welfare

and that the main determinant of a dealer’s trading cost is not her centrality but rather the

centrality of her counterparties. We used a calibrated example and various robustness checks to

illustrate that in realistic interdealer networks, more-central dealers learn more, intermediate

more, trade more at lower costs and earn higher expected profit.

Importantly, trading protocols in OTC markets have become increasingly diverse. There

are a number of protocols (e.g., dealer runs, broker-assisted work-up protocols), which our

paper does not address explicitly. Given this increasing diversity, it is important to develop

frameworks that put limited emphasis on any one particular trading protocol and can still cap-

ture robust features of OTC markets. Our approach emphasizes that links are persistent, that

the market structure is concentrated, and that dealers intermediate trade between otherwise-

disconnected counterparties. Our model yields price-quantity pairs that are consistent with

each dealers information, potential trading partners and objectives. We implicitly suggest that

if such pairs exists, it is likely that the market will converge to these points, independently of

the trading protocol.

Demand and supply curves have been a powerful tool to model equilibrium in centralized

good markets since the beginning of economic thinking. Using our approach of generalized

demand curves on networks, we have also found a method to obtain insights for decentralized

markets.
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A Appendix: Proofs

In some proofs we use the convention that a network, g, can be represented by an adjacency
matrix A (g) with elements Aij = 1 if ij ∈ g, and Aij = 0 if ij /∈ g. Also, sometimes we
use matrix notation as follows. V, Z̄, Ȳ are n× n matrices of row vectors vi, ȳi, z̄i,, i = 1, ..., n
respectively. The individual elements of V are vij . The individual element of Z̄ is z̄iij iff Aij = 1

and 0 otherwise, while Ȳ is a diagonal matrix with ȳi at its i-th diagonal element.

Proof of Proposition1

We prove the statement in a more general form than stated. It proves existence for a general
Gaussian information structure. We need only that if ωi is a column vector of the covariances
between θi and each of the signals (in our case it is ωii = σ2

θ and ωij = ρσ2
θ for i 6= j), then

ωi > 0 for all i. Note that we can rewrite the problem as follows. We are looking for a V ∗

matrix of which each row vi is the solution of the problem of

max
ȳi,z̄i

(
2viωi − viΣ(vi)>

)
(A.1)

s.t. vi =
[
ȳi + z̄iV ∗

]
ziij = 0⇐⇒ Aij = 0

where Σ is the covariance matrix of signals, s, and ȳi is a row vector with a ȳi at the i−th place
and 0 otherwise, while z̄i is a row vector of size n with elements of some (z̄iij)j=1,..n (subject to
the last constraint).

To see that this V ∗ exists, let us first define the matrix mapping F : Rn×n → Rn×n, which
maps any n× n matrix V 0 to another one with rows (vi)i=1,...,n defined by

vi ≡ arg max
ȳi,z̄i

(
2viωi − viΣ(vi)>

)
(A.2)

s.t. vi =
[
ȳi + z̄iV 0

]
ziij = 0⇐⇒ Aij = 0

Further, let

Vi ≡ {vi : viΣ(vi)> − 2viωi +
ω2
ii

Σii
≤ 0}.

and Vn×n ≡ V1 × V2..× Vn be the set of matrices with rows vi ∈ Vi.
We need to show that F is a continuous self map with respect to the set of matrices Vn×n

and that Vn×n is a convex compact set. Hence, the Brouwer fixed-point theorem applies. We
proceed in steps.

1. We show that F defined by (A.2) is a self-map.

For this, note that increasing the number of 0-s in the i − th row of A (decreasing the
number of links to i in the network) adds more constraints to the problem (A.2). So we
consider the extreme problem where the i− th row and column of A has only zeros, that
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is, each z̄iij ≡ 0. It is easy to show that in this case the problem reduces to

ω2
ii

Σii
= max

vii
[2viiωii − viiΣiivii]

with a solution of yi = vii = ωii
Σii

and vij = 0 for all i 6= j. Thus, for any A with non-zero

elements in the i − th row and column,
ω2
ii

Σii
is a lower bound on the value agent i can

achieve, that is, the solution vi will satisfy
ω2
ii

Σii
≤ 2viωi − viΣ(vi)>. Implying that for

any V0 and A, F projects to Vnxn.

2. F is continuous in V 0 by the Maximum Theorem.

3. Given that the Cartesian product of convex and compact sets is also convex and compact,
we only have to show that each Vi is convex, closed and bounded

(a) Vi is convex. Under the assumption that Σ is positive definite, viΣ(vi)>−2viωi is a
convex function (the sum of a convex and a linear function). From the fact that the
sub-level sets of a convex functions are convex, it follows that the set Vi is convex.

(b) Vi is closed. Let g(vi) ≡ viΣ(vi)>−2viωi+
ω2
ii

Σii
be a function from Rn to R. Clearly,

g is continuous and Vi ≡ {vi : g(vi) ≤ 0}. Let vin, n = 1...∞ be a convergent series
of vectors in Vi with vi∞ being the limit point of this series. Since g is continuous,
we have g(vi∞) = limn→∞ g(vi∞) ≤ 0. Hence vi∞ ∈ Vi.

(c) Vi is bounded. Note that the function g(vi) is strictly convex, continuous, and
twice-differentiable. Hence, there exists a minimum vimin that g(vimin) ≤ g(vi) for
all vi ∈ Vi Also, from the definition Vi, g(vi) ≤ 0 for all vi ∈ Vi. Note also that g(·)
is strongly convex on Vi as there exists m > 0 such that ∇2g(v) −mI =2Σ −mI
is positive definite (for example, one can pick m = σ2

θ + σ2
ε). Also, from strong

convexity

g(v
′′
) ≥ g(v

′
) +∇g(v

′
)(v

′′ − v
′
)> +

m

2
||v′′ − v

′ ||22.

for any v
′
,v
′′ ∈ Rn. In particular, for v

′
= vimin, we have ∇g(vimin) = 0 implying

that
g(v

′′
)− g(vimin) ≥ m

2
||v′′ − vimin||22.

Let us pick v
′′

= vi an arbitrary element of Vi. Then g(v
′′
) ≤ 0 implying

− 2

m
g(vimin) ≥ ||vi − vimin||22

proving the claim.

Proof of Proposition 2 and Corollary 1

Consider an equilibrium of the conditional guessing game in which

E(θi
∣∣si, egi ) = ȳisi +

∑
k∈gi

z̄iikE(θk
∣∣∣sk, egk )
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for every i. If the system (21) has a solution, then

E(θi
∣∣si, egi ) =

yi(
1−

∑
l∈gi

ziil
2−zlli

4−ziilz
l
li

)si +
∑
k∈gi

ziik

2−ziik
4−ziikz

k
ki(

1−
∑
l∈gi

ziil
2−zlli

4−ziilz
l
li

)E(θk
∣∣∣sk, egk ) (A.3)

holds for every realization of the signals, and for each i. Now we show that choosing the prices
and demand functions (23) and (24) is an equilibrium of the OTC game.

First note that (26) for i and j at a given link implies (22). Also, the choice (24) implies

E(θi
∣∣si, egi ) = yisi +

∑
k∈gi

ziikpij = E(θi
∣∣si,pgi ). (A.4)

The second equality comes from the fact that the first equality holds for any realization of
signals and the projection theorem determines a unique linear combination with this property
for a given set of jointly normally distributed variables. Thus, (24) for each ij link is equivalent
with the corresponding first order condition (10). Finally, (A.4) also implies that the bilateral
clearing condition between a dealer i and dealer j that have a link in network g

tiij
(
E(θi

∣∣si,pgi )− pij)+ tjij
(
E(θj

∣∣sj ,pgj )− pij
)

+ βijpij = 0

is equivalent to (23). That concludes the statement.

Corollary 1 follows from the direct observation of (23) and (24) and (22).

Proof of Proposition 3

Case 1: Circulant networks
We provide here a draft of the proof. Further details of each step is available on request.
Step 1 : We show that for circulant networks, each z̄iij > 0 for any ρ ∈ (0, 1) .

1. First, we show that z̄iij > 0 in the limit ρ→ 0. Clearly when ρ = 0, the equilibrium V is a
diagonal matrix as the signals of others are uninformative in this pure private value case.
The starting point is to show that for diminishingly small ρ, the off-diagonal elements of
V which are corresponding to first neighbors are diminishing at a slower rate than the
rest of the off-diagonal elements. In particular, we conjecture and verify that there are
constants a0 and a1 that

lim
ρ→0

(
V − a0I

ρ

)
= a1A

where I and A are the identity matrix and the adjacency matrix respectively. For this,
we calculate the matrices Ȳ and Z̄ which correspond to a starting matrix V 0 = a0I+a1A
for a given a0 and a1 in problem (A.2), obtain the resulting new matrix V 1 =

(
Ȳ + Z̄V 0

)
,

observe that each non-zero element in Z̄, z̄iij > 0 are positive, and verify there are indeed

a0 and a1 values for which limρ→0

(
V 1−a0I

ρ

)
= a1A.

2. Given that all z̄iij are positive in this limit, let us counterfactualy assume that there is
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ρ ∈ (0, 1) for which at least one z̄iij < 0. By continuity, then must be a ρ0 for which all

z̄iij ≥ 0 but at least one of them is zero. But this implies that for these parameters dealer i
finds the expectation of one of her neighbors uninformative. Let {ik}k=1,...,mi be the set of

i’s neighbors and, without loss of generality, suppose that the index of this neighbor is mi.
The only way this holds is that there is a linear combination of si and

{
eik
}
k=1,...,(mi−1)

which replicates eimi , that is, that there is an arbitrary vector [λ0, λ1..λmi−1], that

λ0s
i + λ1e

i1 + ...λmi−1e
i(mi−1) = eimi (A.5)

(a) Note that if the network is circulant, there must be an equilibrium where V is also
circulant. To see this, note that problem (A.2) maps circulant networks into circulant
networks. Also, given that we prove the properties of Vn×n vector-by-vector in the
proof of 1, repeating those steps proves the existence of a circulant V fixed point.
Furthermore, in this equilibrium the rows corresponding to the expectation of agent
i and j has to have the structure of vi(i+l) = vi(i−l) = vj(j+l) = vj(j−l) for every l ≥ 0
as long as n ≥ i − l, i + l, j − l, j + l ≥ 1. This is, the weight of each signal in the
equilibrium expectation of a given dealer can depend only on whether that signal
belongs to a first neighbor, or a second neighbor etc. of the given dealer. This is
coming from the symmetry across dealers in circulant networks and the symmetric
informational content of their expectations in this equilibrium.

(b) However, given this symmetric structure of the equilibrium V matrix, there are no
vij and [λ0, λ1..λmi−1] values which can solve the equations (A.5) unless all vij are
the same. For instance, let us spell this out the implied equation system for the first
agent in a (7, 4) circulant network with k̄ being the second neighbor. If the row of
V corresponding to the expectation of the first neighbor of 1 has the structure of
v1 v0 v1 v2 v3 v3 v2 then his second neighbor must have the structure of
v2 v1 v0 v1 v2 v3 v3 . Thus, we need

λ0



1
0
0
0
0
0
0


+ (λ1 + λ2)



v1

v0

v1

v2

v3

v3

v2


= (1− λ3)



v2

v1

v0

v1

v2

v3

v3


to hold for some scalars. It is easy to check that this implies that all v − s are
identical. However, it is also easy to check that a V with identical elements cannot
be a fixed point.

This is a contradiction which concludes step 1.
Step 2 : We show that z̄iij < 1for any ρ ∈ (0, 1) .

For this, note that by using forward induction on the fixed point equation V = Ȳ + Z̄V, we
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obtain that the equilibrium matrix V must satisfy

V = Ȳ lim
u→∞

u∑
0

(
Z̄
)u

+ lim
u→∞

(
Z̄
)u+1

V.

As ρ ∈ (0, 1) the diagonal of Ȳ must be strictly positive, as si must contain residual information
on the private value element of θi relative to the guesses of others. We know from Proposition
1 that V exists. From the fact that all elements of Z̄ are non-negative and from the fact that
the Neumann series limu→∞

∑u
0

(
Z̄
)u

converges if and only if limu→∞
(
Z̄
)u+1

= 0 (see Meyer

(2000) page 618), we must have that indeed limu→∞
(
Z̄
)u+1

= 0. As Z̄ must be symmetric
for a circulant network, and all elements are non-negative, if any elements were larger than 1,
then there were some elements of limu→∞

(
Z̄
)u+1

which would not diminish (as the elements(
z̄iij

)u+1
will be a component in some elements of the the matrix

(
Z̄
)u+1

for any i and j).

Step 3 : Now, we search for equilibria such that beliefs are symmetric, that is

ziij = zjji

for any pair ij that has a link in network g.
The system (21) becomes

yi(
1−

∑
k∈gi

ziik
2−ziik

4−(ziik)
2

) = ȳi

ziij

2−zij
4−z2ij(

1−
∑
k∈gi

ziik
2−ziik

4−(ziik)
2

) = z̄iij

for any i ∈ {1, 2, ..., n}. Working out the equation for ziij , we obtain

ziij
2 + ziij

= z̄iij

1−
∑
k∈gi

ziik
2 + ziik


and summing up for all j ∈ gi

∑
j∈gi

ziij
2 + ziij

=
∑
j∈gi

z̄iij

1−
∑
k∈gi

ziik
2 + ziik

 .

Denote

Si ≡
∑
k∈gi

ziik
2 + ziik

.

51



Substituting above and summing again for j ∈ gi

Si

1 +
∑
j∈gi

z̄iij

 =
∑
j∈gi

z̄iij

or

Si =

∑
j∈gi

z̄iij(
1 +

∑
j∈gi

z̄iij

) .
We can now obtain

ziij =
2z̄iij

(
1− Si

)
1− z̄iij (1− Si)

(A.6)

and
yi = ȳi

(
1− Si

)
.

Finally, the following logic show that ziij ≤ 2. As z̄iij < 1, 2z̄iij <

(
1 +

∑
j∈gi

z̄iij

)
implying that

2z̄iij
(
1− Si

)
< 1 or 2z̄iij

(
1− Si

)
< 2

(
1− z̄iij

(
1− Si

))
, which gives the result by A.6.

Case 2: Star networks
We give the closed-form solutions for the star network in Appendix B.2. One can check by

straightforward algebra that the resulting ziij are indeed in the [0, 2] interval.

Proof of Proposition 4

In an equilibrium of the OTC game, prices and quantities satisfy the first order conditions (10)
and must be such that all bilateral trades clear.

Since market clearing conditions (6) are linear in prices and signals, we know that each
price (if an equilibrium price vector exists) must be a certain linear combination of signals.
Thus, each price is normally distributed.

From the first order conditions we have that

qiij(s
i,pgi) = tiij

(
E(θi

∣∣si,pgi )− pij) .
The bilateral clearing condition between a trader i and trader j that have a link in network g
implies that

tiij
(
E(θi

∣∣si,pgi )− pij)+ tiij
(
E(θj

∣∣sj ,pgj )− pij
)

+ βijpij = 0

and solving for the price pij we have that

pij =
tiijE(θi

∣∣si,pgi ) + tiijE(θj
∣∣sj ,pgj )

tiij − βij

Since agent i knows E(θi
∣∣si,pgi ), by definition, the vector of prices pgi is informationally
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equivalent for her with the vector of posteriors of her neighbors Egi =
{
E(θj

∣∣sj ,pgj )
}
j∈gi .

This implies that
E(θi

∣∣si,pgi ) = E(θi
∣∣si,Egi ).

Note also that as each price is a linear combination of signals and E
(
θj |·
)

is a linear operator on
jointly normal variables, there must be a vector wi that E(θi

∣∣si,pgi ) = E(θi
∣∣si,Egi ) = wis.

That is, the collection of
{
wi
}
i=1,...n

has to satisfy the system of n equations given by

wis =E(θi
∣∣∣si,{wjs

}
j∈gi )

for every i. However, the collection
{
wi
}
i=1,...n

that is a solution of this system, is also an
equilibrium of the conditional guessing game by construction.

Proof of Proposition 5

Equation (23), the fact that tiij > 0 for all i and j, and E(θi
∣∣si,pgi ) = E(θi

∣∣si,Egi ) = vis
from Proposition 4 implies that we only have to show that all elements of the equilibrium V
matrix defined in the proof of Proposition 1 are strictly positive.

We use the notation of Proposition 1. Vi is a convex set and must contain some strictly

positive vectors as the one minimizing g(·), defined above,
(
vi
)min ≡ Σ−1ωi, is strictly positive

by assumption. Now we show that there it contains only a single point, the one for vii = ωii
Σii

and vij = 0 for all i 6= j, which is in any of the axes of Rn. This is sufficient to prove that vectors
in Vi cannot have negative elements as for a convex set to cross any of the axes, it should have
at least two points on that given axis. We show this by contradiction. Assume that vi ∈ Vi
has an other elements on any of the axes, e.g. a v̄i such that vi1 = vi2 = ... = vin−1 = 0 and
vin = x. Then g(·) simplifies to

g(vi) = x2Σnn − 2xωin +
ω2
ii

Σii
,

The function attains a minimum at x∗ = ωin
Σnn

. The minimum value of the function is − ωin
Σnn

.

Therefore vi is not an element of Vi if

ω2
in

Σnn
<
ω2
ii

Σii
.

But this always holds in our parameterization (as
ω2
in

Σnn
=

(ρσ2
θ)

2

σ2
θ+σ2

ε
and

ω2
ii

Σii
=

(σ2
θ)

2

σ2
θ+σ2

ε
).

As we showed in Proposition 1, for any network and any parameters V must be in the
Cartesian product of Vn×n. However, the previous argument shows that there is a single
matrix which has not strictly positive elements, the diagonal matrix with vii = ωii

Σii
for all i.

But it is simple to check that this cannot be a fixed point of our system for any connected
network and any parameters as long as ρ 6= 0.
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Proof of Proposition 6

1. From Proposition 4 we know that in any equilibrium of the OTC game

E(θi|si,pgi) = E(θi|si, egi).

Also, Lemma 5 shows that each equilibrium expectation in the conditional guessing game
is a linear combination of all signals in the economy

E(θi|si, egi) = vis

where vi > 0 for all i. That is, when the dealer network is complete, through prices, each
dealer observes (n− 1) linear combinations of s apart from her own private signal. Clearly,
as long as these linear combinations are independent, the statement holds. Instead, let
us assume that there exists a β, that E(θi|si, egi) = vis = βvjs =E(θj |sj , egj ) for some i
and j. These two agents are connected (as everyone else). However, for any ρ < 1, this is
impossible, because at least one of the agents would find that putting a different weight
on its own signal si improves over its estimate of θi over the best estimate of agent j on
θj . Implying that either vis vjs is not an equilibrium of the conditional guessing game,
implying that it cannot be an equilibrium guess in the OTC game either (by Proposition
2).

2. Given joint normality, we only have to show that limρ→1E
(
θi|si,pgi

)
= E

(
θi|s
)

and
limρ→1 var

(
θi|si,pgi

)
= var

(
θi|s
)
. We proceed in steps.

(a) Note that when ρ = 1, there exists an equilibrium of the conditional guessing game,(
egi
)
i=1,...n

where E
(
θi|si, egi

)
= E

(
θi|s
)

and var
(
θi|si, egi

)
= var

(
θi|s
)

for all

i.This is so, because when ρ = 1, the best guess, E
(
θi|s
)
, for each agent conditi-

onally of observing each signal is the same across agents. Therefore, if any agent
were to pick this guess, all of its neighbors would and could pick the same guess (by
putting a weight of 1 on this guess). That is, it is a fixed point as defined by the
equilibrium in the conditional guessing game.

(b) We argue this equilibrium is unique. For this, note that with ρ = 1, the equi-
librium guess of agent i, vis has to be identical of that of agent vjs, for any
pair of agents. The reason is that otherwise, there exists two linked agents, i, k

with vjs 6= vks, which implies either (1) differing values,e.g.,
(
2viωi − viΣ(vi

)>
>(

2vkωk − vkΣ
(
vk
)>)

, where we use the notation in the proof of Proposition 1.

However, in this case, because ρ = 1, agent k would be motivated to put a weight of
1 to the guess of agent i, to obtain the same value as agent i does. Which is a contra-

diction of the claim that vks is an equilibrium guess. Or (2) if
(

2viωi − viΣ
(
vi
)>)

=(
2vkωk − vkΣ

(
vk
)>)

but vjs 6= vks, then a convex combination of vjs and vks is

a feasible guess for any of the agents which improves their value. This is also a
contradiction of the claim that vjs,vks were equilibrium guesses. However, if all
agents have the same guesses, then this guess has to be the best guess E

(
θi|s
)
.

Otherwise, any agent would put a non-zero weigh on his own signal to improve on
this guess, leading to different equilibrium guesses across agents; a contradiction.
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(c) By the continuity of the conditional guessing game in ρ, whenever ρ is sufficiently
close to one any equilibrium must be arbitrarily close to the one at ρ = 1, implying

lim
ρ→1

E
(
θi|si, egi

)
= E

(
θi|s
)

lim
ρ→1
V
(
θi|si, egi

)
= V

(
θi|s
)
.

(d) Following the argument in Proposition 2, if the equilibrium of the OTC game exists
for a ρ sufficiently close to 1, it is based on an equilibrium of the conditional guessing
game. Therefore for any agent the equilibrium price vector pgi is informationally
equivalent to the guess vector egi in the conditional guessing game, implying the
result.

Proof of Proposition 7

Observe that by symmetry across periphery dealers, V =
(
I − Z̄

)−1
Ȳ, for star network has

the elements of

v11 = ȳC
1

1− (n− 1) z̄C z̄P

vi1 = ȳC
z̄P

1− (n− 1) z̄C z̄P

vii = ȳP
1− (n− 2) z̄C z̄P
1− (n− 1) z̄C z̄P

v1i = ȳP
z̄C

1− (n− 1) z̄C z̄P

vij = ȳP
z̄C z̄P

1− (n− 1) z̄C z̄P

where ȳC , ȳP are the weights on the private signal and z̄C , z̄P are the weights on the others’
guesses in the central and periphery agents’ guessing function respectively. As maximizing

E
(
−
(
θ − ei

)2)
is equivalent with maximizing

2tr (V Σθs)− tr
(
V ΣV >

)
where Σii = 1 + σ2,Σij = ρ, [Σθs]ii = 1, [Σθs]ij = ρ, we calculate the expressions for the
components of this objective function.[

V ΣV >
]

11
=
(
1 + σ2

)
v2

11 +
(
1 + σ2

)
(n− 1) v2

1i + ρ2 (n− 1) v1iv11 + ρ (n− 1) (n− 2) v2
1i

=
((1+σ2)ȳ2C+((1+σ2)+ρ(n−2))(n−1)ȳ2P z̄

2
C+ρ2(n−1)ȳC ȳP z̄C)

(1−(n−1)z̄C z̄P )2
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and[
V ΣV >

]
ii

=
(
(n− 2) (n− 3) v2

ij + (n− 2) 2 (vi,1 + vi,i) vij + 2vi,1vi,i
)
ρ+

(
σ2 + 1

) (
v2
ii + (n− 2) v2

ij + v2
i,1

)
=

(
ȳC+z̄C ȳP (n−2)

(
1− (n−1)

2
z̄C z̄P

))
2z̄P ȳP ρ+(σ2+1)((1−(n−2)z̄C z̄P )2ȳ2P+(n−2)ȳ2P z̄

2
P z̄

2
C+ȳ2C z̄

2
P )

(1−(n−1)z̄C z̄P )2

and
tr
(
V ΣV >

)
=
[
V ΣV >

]
11

+ (n− 1)
[
V ΣV >

]
ii
.

Also,

tr (V Σθs) = v11 + (n− 1) vii + ρ (n− 1) (v1i + vi1) + ρ (n− 1) (n− 2) vij =

=
ȳC + ρ (n− 1) ȳP z̄C
(1− (n− 1) z̄C z̄P )

+ (n− 1)
ȳP (1− (n− 2) z̄C z̄P (1− ρ)) + ρȳC z̄P

(1− (n− 1) z̄C z̄P )

This implies that

lim
δ→0

∂U (z̄C + δ, z̄P + δ, ȳC − δ, ȳP − δ)
∂δ

= −f (z̄P , z̄C , ȳC , ȳP ;n, ρ, σ)

(−1 + (n− 1)z̄C z̄P ) 3
,

where f (·) is a polynomial. Then we substitute in the analytical expressions for the decentrali-

zed optimum z̄∗C , z̄
∗
P , ȳ

∗
C , ȳ

∗
P given in closed form in Appendix B.2 and rewrite limδ→0

∂U(z̄∗C+δ,z̄∗P+δ,ȳ∗C−δ,ȳ
∗
P−δ)

∂δ
as a fraction. Both the numerator and the denominator are polynomials of σ2.of order 9.
A careful inspection reveals that each of the coefficients are positive for any ρ ∈ (0, 1) and
n ≥ 3.(Details on the resulting expressions in these calculations are available from the authors
on request.)

Proof of Proposition 8

The first part comes by the observation that as zV → 1 − 1
n−1 , tV → ∞, while tCN is finite

for these parameters. The second part comes from taking the limit ρ → 1 of the ratio of the
corresponding closed-form expressions we report in Appendices B.1 and B.3. In particular,

lim
ρ→1

tCN
tV

=
2n− 3

n− 1
> 1

lim
ρ→1

−βCN
2 E

(
p2
ij

)
−βV

2 E
(
p2
V

) =

(
2n− 3

n− 1

)2

> 1

lim
ρ→1

n(n−1)
2 E

(
qCN

(
θi − pCN

))
E (qV (θi − pV ))

=
2n− 3

(n− 1)2
< 1

lim
ρ→1

n(n−1)
2 E

(
qCNθ

i
)

+ βCN
2 E

(
p2
ij

)
E (qV θi) + βV

2 E
(
p2
V

) =
3− 8n+ 4n2

(3(n− 1)2
> 1.
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Proof of Proposition 9

The statements come with simple algebra from the closed-form expressions we report in Ap-
pendix B.2.

The first part comes by the observation that as zV → 1− 1
n−1 , tV →∞, while tC and tP are

finite for these parameters. The second part comes from taking the limit ρ→ 1 of the ratio of
the corresponding closed-form expressions we report in Appendices B.3 and B.2. In particular,

lim
ρ→1

tV
tC

= (n− 1)
zC + zP − zCzP

(2− zP ) ((n− 1) zV − (n− 2))
=∞

lim
ρ→1

tV
tP

= (n− 1)
zC + zP − zCzP

(2− zC) ((n− 1) zV − (n− 2))
=
n− 1

n
< 1

Proof of Proposition 10

Formally, we define the price-discovery game as follows. In round 0, each dealer i chooses

a bidding strategy Bi
ij(s

i;
{
πjij,τ

}
j∈gi

) that describes the counter-offers that traders at desk i

should make in round τ + 1, conditional on the bids they received in round τ ≥ 0, such that

Bi
ij(s

i;
{
πjij,τ

}
j∈gi

) = πiij,τ+1, (A.7)

for each j ∈ gi. If there exists a price and quantity vector
{
p̄iij , q̄

j
ij

}
ij∈g

with

p̄iij = p̄jij ,

q̄iij + q̄jij + βij p̄
i
ij = 0,

and
lim
τ→∞

πiij,τ =
(
p̄iij , q̄

i
ij

)
,

for every ij ∈ g and for any random starting vector
{
πiij,0

}
ij∈g

, then trade takes place.

The pay-off for a dealer i is the expected profit E
[∑

j∈gi q̄
i
ij

(
θi − p̄iij

)]
, provided

{
p̄iij , q̄

j
ij

}
ij∈g

exist, and minus infinity otherwise. Thus, taking each other dealers’ bidding strategy as given,
dealer i solves

max{
Biij(s

i;{πjij,τ}j∈gi )
}
j∈gi

E

∑
j∈gi

q̄iij
(
θi − p̄iij

)
|si
 .

Starting from an equilibrium in the OTC game, we construct a bidding strategy for dealer
i as follows. When a trader at desk i receives a bid πjij,τ = {pjij,τ , q

j
ij,τ} from each of his

counterparties j ∈ gi, she transforms pjij,τ to

ejτ =
pjij,τ

(
tiij + tjij − βij

)
− tiijeiτ−1

tjij
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for each j ∈ gi. Then, she updates her expectation about the asset value to be

eiτ+1 = ȳisi + z̄giegi,τ . (A.8)

Finally, she constructs the counter-offer πiij,τ+1 with elements

piij,τ+1 =
tiije

i
τ+1 + tjije

j
τ

tiij + tjij − βij
qiij,τ+1 = tiij

(
eiτ+1 − piij,τ+1

)
.

First, we show that if bidding functions are defined as above, the OTC price-discovery process
converges to the equilibrium prices and quantities in the OTC game. To see this, we write
(A.8) in matrix form as

eτ+1 = Ȳ s + Z̄eτ .

where eτ+1 =
(
eiτ+1

)
i=1..n

and Ȳ, Z̄ are constructed from ȳi and z̄gi respectively. Note that
starting from any random vector e0 we’ll have

eτ+1 =
(
I + Z̄ + ...+

(
Z̄
)τ)

Ȳ s+
(
Z̄
)τ+1

e0.

In step 2 of the proof of Proposition 3, we show that the fact that all elements of Z̄ are
positive together with the existence of equilibrium in the conditional guessing game imply that
limu→∞

(
Z̄
)u+1

= 0, which in turn implies that
(
I − Z̄

)
is nonsingular (see Meyer (2000) page

618),
(
I − Z̄

)−1 ≥ 0 and (
I − Z̄

)−1
=

∞∑
τ=1

(
Z̄
)τ
.

(see Meyer (2000) pp. 620 & 618.)
Thus, we have that

lim
τ→∞

eτ+1 =
(
I − Z̄

)−1
Ȳ s,

or the equilibrium expectations in the OTC game. But then, by definition,
{
p̄iij , q̄

i
ij

}
ij∈g

exist

and coincide with the equilibrium of the OTC game.
The last step is to show that dealer i would not want to change her bidding strategy

unilaterally. Note that for any such deviation to be meaningful, it has to imply alternative
limit price and quantity vectors. If there is no convergence, dealer i receives a payoff of minus
infinity. However, by construction, if a modified bidding strategy converges to different price
and quantity vectors, then these vectors are also fixed points of generalized demand curves in
the OTC game. However, the other dealers’ bidding strategies are constructed based on their
equilibrium demand functions in the OTC game. This implies that if dealer i wants to deviate
from the equilibrium bidding strategies in the price-discovery game, he wants to deviate from
his generalized demand curve in the original OTC game as well. But this is a contradiction.
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B Appendix: Closed forms in special cases

Throughout, we use the notation σ ≡ σ2
ε

σ2
θ
.

B.1 Centralized market

Following Vives (2011), we have

qV = tV
(
ei − pV

)
pV =

tV
(βV + ntV )

∑
i

ei,

where tV = −βV
n(zV −1)+2−zV and zV = 2σρ

(1−ρ)(1+ρ(n−1))+σ implying ∂zV
∂ρ ,

∂zV
∂σ > 0 and expectations

are privately fully revealing

ei = E(θi|si, egi) = E(θi|s) =
1− ρ

1 + σ − ρ

(
si +

ρσ

(1− ρ) (1− ρ+ nρ+ σ)

n∑
i=1

si

)
.

Substituting in these expressions into expressions (27)-(29) gives closed-form solutions for
expected profit, expected utility of customers and welfare.

B.2 Star network

Without loss of generality, we characterize a star network with dealer 1 at the centre. There
exist at least one equilibrium of the conditional guessing game such that for dealer 1

z̄1
1i = z̄C (B.1)

for any i. Similarly, for any dealer i in the periphery

z̄ii1 = z̄P .

We start with dealer 1, who chooses her demand function conditional on the beliefs of the
other (n − 1) dealers. Given that she knows s1, she can invert the signals of all the other
dealers. Hence, her belief is given by

E(θ1|s1, eg1) = E(θ1|s) =
1− ρ

1 + σ2 − ρ

(
s1 +

ρσ2

(1− ρ) (1 + σ2 − ρ+ nρ)

n∑
i=1

si

)
.

Or

E(θ1|s1, eg1) = v11s
1 +

n∑
j=2

v1js
j ,
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where

v11 =
1− ρ

1 + σ2 − ρ

(
1 +

ρσ2

(1− ρ) (1 + σ2 − ρ+ nρ)

)
(B.2)

v1j =
1− ρ

1 + σ2 − ρ
ρσ2

(1− ρ) (1 + σ2 − ρ+ nρ)
(B.3)

for all j 6= 1.
Further, the belief of a periphery dealer i is given by

E(θi|si, e1) =

(
1

Ṽ
(
θi, e1

) )>( 1 + σ2 Ṽ
(
si, e1

)
Ṽ
(
si, e1

)
V
(
e1
) )−1(

si

e1

)
,

where Ṽ (·, ·) ≡ V(·,·)
σ2
θ

is the scaled covariance operator and

Ṽ
(
e1
)

=
(1− ρ) (1 + (n− 1) ρ) + σ2

(
1 + (n− 1) ρ2

)
(1 + σ2 − ρ) (1 + σ2 + (n− 1) ρ)

Ṽ
(
si, e1

)
= ρ

Ṽ
(
θi, e1

)
= ρ

(1− ρ) (1 + (n− 1) ρ) + σ2 (2 + (n− 2) ρ)

(1 + σ2 − ρ) (1 + σ2 + (n− 1) ρ)
.

Since

E(θi|si, e1) =
Ṽ (e1)− Ṽ

(
θi, e1

)
ρ

Ṽ (e1) (1 + σ2)− ρ2
si +

Ṽ
(
θi, e1

) (
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
e1

= viis
i + vi1s

i +
n∑
j=2
j 6=i

v1js
j

for any i 6= 1, it follows that

vi1 =
Ṽ
(
θi, e1

) (
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
v11 (B.4)

vii =
Ṽ
(
e1
)
− Ṽ

(
θi, e1

)
ρ

Ṽ (e1) (1 + σ2)− ρ2
+
Ṽ
(
θi, e1

) (
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
v1j (B.5)

vij =
Ṽ
(
θi, e1

) (
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
v1j (B.6)
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and

ȳP =
Ṽ
(
e1
)
− Ṽ

(
θi, e1

)
ρ

Ṽ (e1) (1 + σ2)− ρ2

z̄P =
Ṽ
(
θi, e1

) (
1 + σ2

)
− ρ

Ṽ (e1) (1 + σ2)− ρ2
.

Moreover, since

e1 = E(θ1|s1, eg1) = ȳCs
1 +

n∑
j=2

z̄Ce
j = ȳCs

1 +

n∑
j=2

z̄C
(
ȳP s

i + z̄P e
1
)
,

then

E(θ1|s1, eg1) =
ȳC

1− (n− 1) z̄C z̄P
s1 +

n∑
j=2

z̄C ȳP
1− (n− 1) z̄C z̄P

si.

This implies that

z̄C =
v1j

ȳP + (n− 1) z̄P v1j

and

ȳC =
v11ȳP

ȳP + (n− 1) z̄P v1j
.

We now solve the system (21) with substituting the expression for z̄C , ȳC , z̄p, ȳP above
giving the solution

zP = 2z̄P

and

zC = z̄C (n+ 2z̄P − nz̄P − 1) + 1−
√

((z̄C (n (1− z̄P ) + 2z̄P − 1) + 1))2 − 4z̄C

and

yC = ȳC

(
1− nzC

2− zP
4− zCzP

)
yP = ȳP

(
1− zP

2− zC
4− zCzP

)
.

B.3 Complete network

In the complete network, each dealer i chooses her demand function conditional on the beliefs
of the other (n− 1) dealers. Given that she knows si, she can invert the signals of all the other
dealers. Hence, her belief is given by

E(θi|si, egi) = E(θi|s) =
1− ρ

1 + σ − ρ

(
si +

ρσ

(1− ρ) (1− ρ+ nρ+ σ)

n∑
i=1

si

)
.

Then, following the same procedure as above (for a star), and taking into account that in
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a complete network trading strategies are symmetric, we obtain that

E(θi|si, egi) = ȳsi + z̄

n∑
j=1
j 6=i

ej

where
ej = E(θj |sj , egj )

and

ȳ =
(1− ρ) (1 + (n− 1) ρ)

1− ρ+ ρ (1− ρ) (n− 1) + σ (1 + (n− 2) ρ)

z̄ =
ρσ2

ε

σ2
θ + σ2

ε + ρ2σ2
θ − 2ρσ2

θ − 2ρσ2
ε − nρ2σ2

θ + nρσ2
θ + nρσ2

ε

.

Solving the system (21), we obtain

yi =
σ2
θ (1− ρ) (1 + (n− 1) ρ)(

σ2
θ (1− ρ) (1 + (n− 1) ρ) + σ2

ε (1 + 2 (n− 3) ρ)
)

+ 3ρσ2
ε

,∀i

ziij =
2ρσ2

ε(
σ2
θ (1− ρ) (1 + (n− 1) ρ) + σ2

ε (1 + 2 (n− 3) ρ)
)

+ 2ρσ2
ε

,∀ij.

Substituting in the expressions for tiij in Proposition (2) we obtain

tiij = −βij
(
σ2
θ (1− ρ) (1 + (n− 1) ρ) + σ2

ε (1 + 2 (n− 3) ρ)
)

+ 2ρσ2
ε

2ρσ2
ε

.
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C Appendix: Details on calibrated example

C.1 Baseline

We have calibrated our model by finding the equilbrium and calculating the matched moments
for a grid of parameter values. We have targeted values are in Table C.1. We kept refining the
grid to the point where the match was sufficiently close. The code and a detailed explanation
is available on Peter Kondor’s website.

moments model at data(
ρ = 0.014, σ = 0.1584, (−β)σ2

θ = 7.3835
)

average spread (%) 0.742 0.742

relative price dispersion, core (%) 371.3 371.3

total volume ($M) 277676 277676

Table C.1: Matched and implied moments in the model and in the data. The data moments
are from Hollifield et al. (2016, Table 2,3 and 10). We match the 71% of total volume as this
is the fraction of fully identified chains. For model the average customer spread for a given
dealer is 1

|gi|Σj∈gi
2β
tiij

which we average over the whole sample. Relative price dispersion for core

dealers is ratio of expected price dispersion to the absolute mean of prices in those transactions
where one of the counterparties is a core dealer.

C.2 Market distress

To model the effect of market distress, we drop the most connected node from our network. On
Figure 3, this is dealer 1. As dealers 22-23, 25-29, 43 and 69 are connected to the rest of the
market only through dealer 1, we drop those dealers too. We have emphasized in the main text,
under our calibrated parameters the first order determinant of price impact, intermediation
volume and expected profit is dealer centrality. Consistently with this observation, the main
channel our treatment affects the new equilibrium is that all the dealers who were connected
to dealer 1 now have less trading partners. Therefore, these dealers face larger price impact,
trade less and earn smaller expected profit. Averaging over dealers implies larger average price
impact and less volume. Price dispersion also increases as the disruption of information flows
leads to less convergence in posterior expectations which is the main determinant of price
dispersion by expression (14).

C.3 Robustness

We searched over the parameter range used in Figure 4 and observed that the connection bet-
ween degree centrality and expected profit, gross volume, intermediation, information precision
and average price impact are qualitatively the same as illustrated in Figure 5. However, es-
pecially for larger correlation across dealers’ values, ρ, degree centrality does not suppress all
the other network characteristics to the same extent. Figure C.1, a variant of Figure 5 with
ρ = 0.8 illustrates this observation.
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E: Average price impact
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F: Price impact at each link

Figure C.1: Panels A-D show each dealer’s expected profit, gross volume, intermediation, and
posterior information precision (as percentage of precision under fully revealing prices) against
the number of the dealer’s trading partners. Panels E and F show the price impact a dealer
faces at a given link against the number of her trading partners, and against the sum of the
trading partners of the two counterparties at the given link, respectively. Parameter values are
ρ = 0.8, σ = 0.1584, β = −1, σ2

θ = 7.3835 . We added a least-squares line to Panels E and F.

D Appendix: Trading in Segmented Markets

D.1 General set-up

Our framework can provide insights about trade in segmented markets as well. Markets are
segmented when investors, such as hedge funds and asset management firms, trade in some
markets but not in others. Although segmented, markets can be connected, in the sense agents
are able to trade in multiple venues at the same time. To study the implications in segmented
markets, we extend our model in the following way.

We consider an economy in which there are N trading posts connected in a network g. At
each trading post, I, there exist nI risk-neutral dealers. The entire set of dealers is denoted
N =

⋃N
I=NI. Each dealer i ∈ I can trade with other dealers in his own trading post and with

dealers at any trading post J that is connected with the trading post I by a link IJ . Essentially,
the link IJ represents a market in which dealers at trading posts I and J can trade with each
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other. However, they have access to trade in other markets at the same time. Let gI denote
the set of trading posts that are linked with I in the network g, and mI ≡

∣∣gI ∣∣ represent the
number of I’s links.

As before, dealers trade a risky asset in zero net supply, and all trades take place at the
same time. Each dealer is uncertain about the value of the asset. In particular, a dealer’s
value for the asset is given by θi, which is a random variable normally distributed with mean
0 and variance σ2

θ . Moreover, we consider that values are interdependent across all dealers. In
particular, V(θi, θj) = ρσ2

θ for any two agents i, j ∈ N . Each dealer receives a private signal,
si = θi + εi, where εi ∼ IIDN(0, σ2

ε) and V(θj , εi) = 0, for all i and j.
A dealer i ∈ I seeks to maximize her final wealth∑

J∈gI
qiIJ
(
θi − pIJ

)
,

where qiIJ is the quantity traded by dealer i in market IJ , at a price pIJ . Similarly to the OTC
model, the trading strategy of the dealer i with signal si is a generalized demand function
Qi : Rm

i → Rm
i

which maps the vector of prices, pgI = (pIJ)J∈gI , that prevail in the markets
in which dealer i participates in network g into a vector of quantities she wishes to trade

Qi(si; pgI ) =
(
QiIJ(si; pgI )

)
J∈gI

,

where QiIJ(si; pgI ) represents her demand function in market IJ .
Apart from trading with each other, dealers also serve a price-sensitive customer base. In

particular, we assume that for each market IJ , the customer base generates a downward sloping
demand

DIJ(pIJ) = βIJpIJ , (D.1)

with an arbitrary constant βIJ < 0. The exogenous demand (D.1) ensures the existence of the
equilibrium when agents are risk neutral, and facilitates comparisons with the OTC model.

The expected payoff for dealer i ∈ I corresponding to the strategy profile
{
Qi
(
si; pgI

)}
i∈N

is

E

∑
J∈gI

QiIJ(si; pgI )
(
θi − pIJ

)
|si


where pIJ are the prices for which all markets clear. That is, prices satisfy∑
i∈I

QiIJ
(
si; pgI

)
+
∑
j∈J

QjIJ
(
sj ; pgJ

)
+ βIJpIJ = 0, ∀ IJ ∈ g. (D.2)

D.2 Equilibrium concept

As in the OTC game, we use the concept of Bayesian Nash equilibrium. For completeness, we
reproduce it below.

Definition 3 A Linear Bayesian Nash equilibrium of the segmented market game is a vector of
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linear generalized demand functions
{
Qi
(
si; pgI

)}
i∈N such that Qi(si; pgI ) solves the problem

max
(QiIJ )

J∈gI
E


∑
J∈gI

QiIJ(si; pgI )
(
θi − pIJ

) ∣∣si
 , (D.3)

for each dealer i, where the prices pIJ satisfy (D.2) .

A dealer i chooses a demand function in each market IJ , in order to maximize her expected
profits, given her information, si, and given the demand functions chosen by the other dealers.

D.3 The Equilibrium

In this section, we outline the steps for deriving the equilibrium in the segmented market game
for any network structure. First, we derive the equilibrium strategies as a function of posterior
beliefs. Second, we construct posterior beliefs that are consistent with dealers’ optimal choices.
In the OTC game we used the conditional guessing game as an intermediate step in constructing
beliefs. Here, we employ the same line of reasoning, although we do not explicitly introduce
the conditional guessing game structure that would correspond to the segmented market game.

D.3.1 Derivation of demand functions

We conjecture an equilibrium in demand functions, where the demand function of dealer i in
market IJ is given by

QiIJ(si; pgI ) = tIIJ(yIIJs
i +

∑
K∈gI

zIIJ,IKpIK − pIJ) (D.4)

for any i ∈ I and J . As evident in the notation, we consider that all dealers at trading post
I are symmetric in their trading strategy, and weigh in same way the signal they receive and
the prices they trade at. Nevertheless, they end up trading different quantities, as they have
different realizations of the signal.

We solve the optimization problem (D.3) pointwise. That is, for each realization of the
vector of signals, s, we solve for the optimal quantity qiIJ that each dealer i ∈ I demands in
market IJ . Given the conjecture (D.4) and the market clearing conditions (D.2), the residual
inverse demand function of dealer i in market IJ is

pIJ = −
tIIJy

I
IJ

∑
k∈I,k 6=i

sk + tJIJy
J
IJ

∑
k∈J

sk + (NI − 1)
∑

L∈gI ,L 6=J
tIIJz

I
IJ,ILpIL +NJ

∑
L∈gJ ,L 6=I

tJIJz
J
IJ,JLpJL + qiIJ

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ

.

(D.5)
Denote

IJi ≡ −
tIIJy

I
IJ

∑
k∈I,k 6=i

sk + tJIJy
J
IJ

∑
k∈J

sk + (NI − 1)
∑

L∈gI ,L6=J
tIIJz

I
IJ,ILpIL +NJ

∑
L∈gJ ,L6=I

tJIJz
J
IJ,JLpJL

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ

(D.6)
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and rewrite (D.5) as

pIJ = IJi −
1

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ

qiIJ . (D.7)

The uncertainty that dealer i faces about the signals of others is reflected in the random in-
tercept of the residual inverse demand, IJi , while her capacity to affect the price is reflected in

the slope −1/
(

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ t

J
IJ

(
zJIJ,IJ − 1

)
+ βIJ

)
. In the segmented mar-

kets game, however, the random intercept IJi reflects not only the signals of the dealers at the
trading post J , but also the signals of the other dealers at the trading post I.

Then, solving the optimization problem (D.3) is equivalent to finding the vector of quantities
qi = Qi(si; pgI ) that solve

max
(qiIJ )

j∈gI

∑
J∈gI

qiIJ

E (θi|si,pgI)−
IJi − qiIJ

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ


From the first order conditions we derive the quantities qiIJ that dealer i ∈ I trades in each
market IJ , for each realization of s, as

2
1

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ

qiIJ = IJi − E
(
θi|si,pgI

)
,

This implies that the optimal demand function

QiIJ(si; pgi) = −
(
(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ t

J
IJ

(
zJIJ,IJ − 1

)
+ βIJ

) (
E(θi

∣∣si,pgI )− pIJ
)

(D.8)
for each dealer i in market IJ .

Further, given our conjecture (D.4), equating coefficients in equation (D.8) implies that

E(θi
∣∣si,pgI ) = yIIJs

i +
∑
K∈gI

zIIJ,IKpIK .

However, the projection theorem implies that the belief of each dealer i can be described as
a unique linear combination of her signal and the prices she observes. Thus, it must be that
yIIJ = yI , and zIIJ,JK = zIIK for all I, J , and K. In other words, the posterior belief of a dealer
i is given by

E(θi
∣∣si,pgI ) = yIsi + zgIpgI , (D.9)

where zgI =
(
zIIJ
)
J∈gI is a row vector of size mi. Then, we obtain that the trading intensity

of dealer at trading post I satisfies

tIIJ = (NI − 1) tIIJ
(
1− zIIJ

)
+NJ t

J
IJ

(
1− zJIJ

)
− βIJ . (D.10)

If we further substitute this into the market clearing conditions (D.2) we obtain the price
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in market IJ as follows

pIJ =

tIIJ

(∑
i∈I

E
(
θi|si,pgI

))
+ tJIJ

(∑
j∈J

E
(
θj |sj ,pgJ

))
NItIIJ +NJ tJIJ − βIJ

. (D.11)

From (D.10) and the analogous equation for tJIJ , it is straightforward to derive the trading
intensity that dealers at trading post I and J have. This implies that we can obtain the price
in each market IJ as

pIJ = wIIJ

(∑
i∈I

E
(
θi|si,pgI

))
+ wJIJ

∑
j∈J

E
(
θj |sj ,pgJ

) , (D.12)

where

wIIJ ≡
zJIJ − 2

(NJ +NI − 1) zIIJz
J
IJ − 2 (NI − 1) zIIJ − 2 (NJ − 1) zJIJ − 4

.

This expression is useful to relate the belief of a dealer i ∈ I to the beliefs of other dealers at
the same trading post, and at trading posts that are connected to I.

D.3.2 Derivation of beliefs

We follow the same solution method that we developed in Section 3.1. As before, the key idea
is to reduce the dimensionality of the problem and use our conjecture about demand functions
to derive a fixed point in beliefs, instead of the fixed point (D.8).

In the OTC game we constructed each dealer’s equilibrium belief as a linear combination
of the beliefs of her neighbors in the network. For this, we introduced the conditional guessing
game. The conditional guessing game was a useful intermediate step in making the derivations
more transparent, as well as an informative benchmark about the role of market power for the
diffusion of information.

In the segmented market game it is less straightforward to formulate the corresponding
conditional guessing game. Since there are multiple dealers at each trading post, it is not
immediate how each dealer forms her guess. In particular, we would need to make additional
assumptions about the linear combination of the guesses of dealers in the same trading post
and dealers of the neighboring trading post, that each agent can condition her guess on.

Thus, in the segmented market game we construct beliefs directly as linear combinations
of signals. We conjecture that for each dealer i ∈ I, her belief is an affine combination of the
signals of all dealers in the economy

E
(
θi|si,pgI

)
= v̄IIIs

i +
N∑
K=1

vIIKS
K , (D.13)

where SK =
∑
k∈K

sk, ∀K. This further implies that

∑
i∈I

E
(
θi|si,pgI

)
= v̄IIIS

I +NI

N∑
K=1

vIIKS
K .
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Before we derive the fixed point equation for beliefs, it is useful to write (D.12) in matrix
form, for each trading post I. For this we introduce some more notation. Unless specified
otherwise, in the notation below we keep I fixed and vary J ∈ {1, ..., N}. Let pI be aN−column
vector with elements pIJ if IJ ∈ g, and 0 otherwise. Let zI be aN−column vector with elements
zIIJ if IJ ∈ g, and 0 otherwise. Similarly, let wI be the N−column vector with elements wIIJ
if IJ ∈ g, and 0 otherwise, while WI be a matrix with elements wJIJ on diagonal if IJ have a
link, and 0 otherwise (all elements off-diagonal are 0, as well). Further, let vI be the N−row
vector with elements vIIJ , and v̄I be the N−row vector with elements v̄III at position I and 0
otherwise. Let V be the square matrix with rows vI , and V̄ be the matrix with rows v̄I . Let
S be the N−column vector with elements SI . Let N be a square matrix with elements nI on
diagonal and 0 otherwise. Let 1 be the N−column vector of ones.

Substituting our conjecture for beliefs (D.13) in the equation for the price (D.12), we obtain
the vector of prices which dealers at each trading post I are trading as

pI = wI
(
v̄I + nIvI

)
S +W I

(
V̄ + NV

)
S.

We are now ready to formalize the result.

Proposition D.1 There exists an equilibrium in the segmented markets game if the following
system of equations

vI =
(
zI
)> (

wI
(
v̄I + nIvI

)
+W I

(
V̄ + NV

))
1,∀I (D.14)

and
v̄III = yI , ∀I

admits a solution in vI , for each I.

Proof. As for the OTC game, the proof is constructive. Note that showing that equation
(D.14) admits a solution is equivalent to showing that there exists a fixed point in vI . This is
because, the projection theorem implies that zI , and inherently, wI are a function of vI .

Let vI be a fixed point of (D.14) and v̄III = yI , for each I. We construct an equilibrium for
the segmented-market game with beliefs given by (D.13), as follows. We choose conveniently
zI and wI such that

E
(
θi|si,pgI

)
= yIsi +

(
zI
)> (

wI
(
v̄I + nIvI

)
+W I

(
V̄ + NV

))
S

is satisfied. Then, it follows that the prices given by (D.11) and demand functions given by
(D.8) is an equilibrium of the OTC game.

The derivation we have outlined above also highlights the main technical difficulty of the
segmented market game relative to the OTC game. That is, the signals of dealers in the same
trading post obscure the (sum of) beliefs of the dealers in neighboring trading posts, such that
a dealer can no longer invert the prices she observes and infer what his neighbors posteriors.

D.4 Learning and illiquidity in a star network

In this section, we illustrate the effects of market integration on learning from prices and
market liquidity in an example.In particular, we restrict ourselves to considering a star network,
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in which there are nP dealers at each periphery trading post, and nC dealers at the central
trading post. In particular, we conduct the following numerical exercise. We consider an
economy with nine agents. Keeping their information set fixed, we compare the following four
market structures:

1. 8 trading posts connected in a star network, with one agent in each trading post (N = 8,
nP = 1, nC = 1), that is, 8 trading venues. This is our baseline model with a star
network.

2. 4 trading posts connected in a star network, with two agents in each periphery node and
one agent in the central node (N = 4, nP = 2, nC = 1), that is, 4 trading venues.

3. 2 trading posts connected in a star network, with four agents in each periphery node and
one agent in the central node (N = 2, nP = 4, nC = 1), that is, 2 trading venues.

4. A centralized market (N = 1, nP = 9, nC = 0), that is, a single trading venue.

We consider two directions. First, we investigate what drives the illiquidity central and pe-
riphery agents face for changing degrees of market segmentation. We concentrate on (il)liquidity
as this is a more commonly reported variable in the empirical literature, and we leave the ana-
lysis of welfare and expected profits to Appendix D. Second, to complement the analysis
in Section 4 , we also analyze how much dealers can learn from prices under these market
structures.

The left and center panels in Figure D.2 show the average illiquidity that a periphery,
1
tP

, and a central dealer, 1
tC

, face in each of the scenarios described above. We also plot the

average illiquidity that any agent in a centralized market, 1
tV

, faces. For easy comparison, all
the parameters are the same as in Section 5.1.

To highlight the intuition, we start with the extreme cases of market segmentation compa-
ring illiquidity under a star network and in a centralized market.

D.4.1 Extreme cases of market segmentation with a star network

In this part, we compare illiquidity of dealers in a centralized market and that of a periphery
or central dealer in a star network.

The solid curve in Panels D and the curves in panel F in Figure 2 illustrate that compared to
any agent in a centralized market, the central agent in the star faces higher trading price impact
in general, but the periphery agents tend to face smaller price impact when the correlation
across values is sufficiently high. We partially prove this result. The following proposition
states that if ρ is sufficiently large, illiquidity for the central agent is larger, while illiquidity
for the periphery agents is lower than that for an agent in a centralized market and, when ρ
is sufficiently small, illiquidity for any agent in a star network is larger than the illiquidity for
any agent in a centralized market.

Proposition D.2

1. When ρ is sufficiently small, such that zV is sufficiently close to 1− 1
n−1 , then illiquidity

for any agent in a star network is larger than for any agent in a centralized market
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2. In the common value limit, when ρ→ 1,

(a) illiquidity for a central agent is higher in a star network than for any agent in a
centralized market, and

(b) illiquidity for a periphery agent is lower in a star network than for any agent in a
centralized market.

Proof. The first part comes by the observation that as zV → 1− 1
n−1 , tV →∞, while tC and

tP are finite for these parameters. The second part comes from taking the limit ρ → 1 of the
ratio of the corresponding closed-form expressions we report in Appendices B.3 and B.2. In
particular,

lim
ρ→1

tV
tC

= (n− 1)
zC + zP − zCzP

(2− zP ) ((n− 1) zV − (n− 2))
=∞

lim
ρ→1

tV
tP

= (n− 1)
zC + zP − zCzP

(2− zC) ((n− 1) zV − (n− 2))
=
n− 1

n
< 1

Similarly to the comparison between the complete OTC network and the centralized market
in Section 5.1.2, there are two main forces that drive the illiquidity ratios tV

tC
and tV

tP
. First,

the best response function (31) of a dealer in a centralized market is steeper and has a larger
intercept than the best response function (26) of central and periphery dealers in the star OTC
network. Simple algebra shows that if, counterfactually, the adverse selection parameters were
equal, zP = zC = zV then tV

tC
|zV =zC=zP = tV

tP
|zV =zC=zP > 1, that is, illiquidity for any agents

in the OTC market would be higher than for any agent in the centralized market. This is the
effect which dominates when ρ is small.

Second, parameters zC , zV and zP differ. As we stated in Proposition 9 central agents face
less liquid markets than periphery agents, 1

tP
< 1

tC
because periphery agents are more concerned

about adverse selection (zC < zP ). This implies that tV
tC

> tV
tP

and difference is increasing for
higher ρ. In fact, in the common value the central agent faces an infinitely illiquid market
in the sense that tC → 0, but consumers provide a relatively liquid trading environment for
periphery agents. For periphery agents this is sufficiently strong to reduce their price impact
below the centralized market level as stated in the second part of the proposition.

D.4.2 Intermediate cases of market segmentation with a star network

Interestingly, while the illiquidity a central agent faces is monotonic in segmentation, the illi-
quidity a periphery agents face is not. We see in left panel of Figure D.2 is how the relative
strength of the two forces identified in Section D.4.1 plays out in the four scenarios we con-
sider. First, related to the effect of decentralization on best response functions, illiquidity for
any agent decreases as the market structure approaches a centralized market. Second,the effect
coming from the differing weights of zC and zP is weaker in more centralized markets. The
reason is that as central dealers observe less prices in more centralized markets, they put a
larger weight, zC in each price, implying a smaller difference between zP and zC . This is the
reason why the illiquidity a periphery agent faces under the 2 trading venues structure increases
with ρ almost as fast as in centralized markets. With 4 venues the effect of ρ is weaker.
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Figure D.2: Illiquidity on segmented markets. We show our measure of illiquidity for central
agents , 1

tC
, (left panel) and for periphery agents, 1

tP
, (right panel) when there are 8 trading

venues (dotted), 4 trading venues (dashed), 2 trading venues (dash-dotted), and in the centra-
lized market (solid) as a function of the correlation across values, ρ. Other parameter values
are σ2

θ = 1, σ2
ε = 0.1, B = 1.

Turning to the effect of segmentation on learning, note that for the central dealer prices are
fully revealing under any of the segmented market structures in this exercise. This is because
each price she observes is a weighted sum of her own signal and the sum of signals of the
periphery dealers trading in each venue. Hence, the prices the central dealer observes represent
a sufficient statistic for all the useful information in the economy. This would not be the case
if there were more than one dealer at the central trading post.

In contrast, as it is shown in the right panel of Figure D.2 a periphery agent in a segmented
market always learns less than the central agent, or any agent in a centralized market. Inte-
restingly, for small correlation across values, ρ, a periphery agent in a more segmented market
learns more, while for a sufficiently large correlation across values the opposite is true. The
intuition relies on the relative strength of opposing forces. The price a periphery agent learns
from is a weighted average of the sum of posteriors of periphery agents in the same trading
post and the posterior of the central agent. The posterior of the central agent is more infor-
mative than any of the posteriors that periphery agent at the same trading post have. The
more segmented the market is, the easier is for a dealer at a periphery trading post to isolate
the posterior of the central dealer (for example, in the baseline star network, any price reveals
the posterior of the central dealer perfectly). At the same time, the sum of the posteriors of
periphery dealers at a periphery trading post is more informative in a less segmented market,
as the noise in the signal, as well as the private value components tend to cancel out. This
latter effect helps learning more when the private value component is more important, that is,
when ρ is small. This explains the pattern in the right panel of Figure D.2.

D.5 Welfare and expected profit in the star network

Finally, we illustrate with the following figure how expected profit and welfare changes with
market segmentation. We leave the detailed analysis for future research and highlight only two
interesting observations. First, as trading intensities were not monotonic for the periphery in
the degree of segmentation, expected profit is not monotonic either. Also, total welfare is also
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not monotonic in segmentation.
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